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Abstract

The correlation between two Boolean functions of n inputs is defined as the number
of times the functions agree minus the number of times they disagree, all divided by 2.
In this paper, we compute, in closed form, the correlation between any two symmetric
Boolean functions. As a consequence of our main result, we get that every symmetric
Boolean function having an odd period has an ezponentially small correlation (in n)
with the parity function. This improves a result of Smolensky [12] restricted to sym-
metric Boolean functions: the correlation between parity and any circuit consisting of
a Mod, gate over AND-gates of small fan-in, where ¢ is odd and the function computed
by the sum of the AND-gates is symmetric, is bounded by 27%(™).

In addition, we find that for a large class of symmetric functions the correlation
with parity is identically zero for infinitely many n. We characterize exactly those
symmetric Boolean functions having this property.

1 Introduction

ACO) circuits cannot compute the parity function as shown in the seminal work of Furst,
Saxe, and Sipser [5] and Ajtai [1]. In a breakthrough result, Yao [14] showed that in fact
ACO type circuits (i.e., bounded-depth circuits containing AND, OR and NOT gates)
must have exponential size to compute parity. A simpler proof and nearly optimal lower
bounds were obtained by Hastad [7]. As originally pointed out in [5], these bounds imply the
existence of an oracle separating PH from PSPACE. In order to prove the separation relative
to a random oracle, Cai [4] showed that ACO) type circuits below a certain exponential size
cannot even approzrimate parity, in that the error approaches 50% asymptotically. Babai
[2] subsequently gave an elegant and much simpler proof. More specifically, it is shown
that AC() type circuits, below a certain exponential size, can agree with parity no more
than a fraction 1/2+ f(n) of the 2" inputs, where f(n) = g, (This was implicit in [4]
and Hastad and Boppana, as reported in [7], have the best constant involved.) One of the
interesting consequences of this sharp result is that circuits consisting of a single majority
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gate over ACO)_type circuits cannot compute parity, unless the circuits are of exponential
size [6].

If we allow, for example, Mods gates in addition in the AC() subcircuits, it was shown
by Smolensky [12], extending techniques of Razbarov [10], that the fraction of agreement
between parity and bounded-depth circuits containing AND, OR, NOT and Mods gates,
below a certain exponential size, is no more than 1/2 + f(n), where f(n) = 1/n'/?=°(),
Thus, the bound for f(n) is weaker for this type of circuit. It is therefore natural to ask
if the 1/n1/2_0(1) bound can be tightened, as in the AC(® case, to 2= Ty reduce the
problem to its simplest form, consider a circuit consisting of a Mods gate over AND gates of
small fan-in. Even in this case it is not known if the agreement with parity is exponentially
close to 1/2. (This is also sufficient, since the Razborov approximation is exponentially
close.) However, it is not clear whether Smolensky’s techniques can be used to improve the
known bound below O(1/y/n).

The sum of the inputs going into a Mod, gate can be interpreted as a polynomial in
the input variables. Thus the problem can be stated more precisely as follows: For any
natural number g define the Boolean function M, : N — {0,1} such that My(k) = 1
if Kk 20 (mod ¢q) and 0 otherwise. For a polynomial p : {0,1}" — N, how well can
My(p(z1,...,z,)) approximate parity?

In this paper, we consider a restricted version of this problem, in which we assume the
polynomials p are symmetric. Thus the question we address is: for a symmetric polynomial
p:4{0,1}" — N of low degree, how well can M,(p(z1,...,z,)) approximate parity?

In a recent paper, which was in part an inspiration for this one, Barrington, Beigel,
and Rudich [3] also considered the computational power of symmetric polynomials which
represent Boolean functions in this way. They give a surprising upper bound (and a match-
ing lower bound) for the degree of a symmetric polynomial p such that M,(p(z1,...,z,))
computes the OR function. Their results suggest the very interesting possibility that in
general Mod, gates might be more powerful when ¢ is composite than when ¢ is prime.
In addition, for a genmeral polynomial p (not necessarily symmetric), they prove the first
lower bounds on the degree of p for M,(p) to compute the My function when ¢ and ¢'
are composite and there is a prime divisor of ¢’ that is not a divisor of g. Our problem
is different. We wish to estimate the error rather than finding exact agreement. For the
latter reason, we do not consider the OR function, since a constant polynomial would give
almost complete agreement.

As a measure of how well one Boolean function can approximate another we use the
notion of correlation. Let gi,g92 : {0,1}" — {0,1} be two Boolean functions over the
inputs {z1,...,2,} where z; € {0,1}. The correlation Cp(g1,92) between g1 and g is
the difference between the number of times g; and go agree and the number of times they
disagree, divided by 2". Since g1, g2 take on values in {0, 1}, this can be written as,

Culgng) =27 Y (e,
{z1,..,xn}€{0,1}"
In these terms, the result of Cai and Hastad says that if g is the Boolean function
computed by an AC(®) circuit, and @ denotes the parity function, then C), (g,8) = 2-n

Smolensky’s result says that if ¢ is an odd prime and if p denotes any polynomial of low
degree (e.g., polylog(n)), then C,,(M,(p), ®) = 1/n'/2=°).



Our main result is that if p is any low-degree symmetric polynomial, the correlation
is indeed exponentially small. That is, if ¢ is odd, and p is symmetric and of low degree
(e.g., polylog(n) or even n°M)), then C,(M,(p),®) = 2-™ (see Corollary 3.4). This
is actually a corollary of a general result, which gives a closed form expression for the
correlation between any two symmetric Boolean functions. This result is given in Section 3
(see Theorem 3.1). In Section 4, we show that for a wide class of symmetric polynomials
the correlation with parity is ezactly 0 for infinitely many values of n. Our techniques
allow a detailed analysis of the correlation, so that we can characterize exactly all those
symmetric Boolean functions having this property (Theorem 4.1). We demonstrate, for
elementary symmetric polynomials, how the zeroes in the correlation as a function of n can
be computed when this property holds.

2 Preliminaries

A function g : {0,1}™ — N over Boolean variables {z1, ...,z } is symmetric, if the function
value of g remains unchanged for any permutation of the input variables. As a consequence,
any symmetric function depends only on the sum of its inputs. Hence, we can write it as
g(z1,...,zp) = f(zz?zl z;) for some function f : Z — Z which we say represents g. If g is
a Boolean function, i.e., g : {0,1}" — {0,1}, then we also require f to map to {0,1}.

The elementary symmetric polynomial eq(x1,...,x,) or eg(x) of degree d over Boolean
variables {z1,...,Z,} is the sum of all monomials of the form [, g z; where S C {1,...,n}

and ||S|| = d. It is clear that if the number of variables that are 1 is k, then e4(z) = (¥).
Any symmetric Boolean function of degree d can be written as a linear combination of the
elementary symmetric polynomials of degree < d.

Let D e N, D > 0. Wesay f :Z — Z is periodic with period D if f(k + D) = f(k),
for any k € Z. Unless otherwise noted, when we refer to the period of a function, we mean
the smallest period. Of course any multiple of the period D is also a period, and it is not
hard to see that any period must be a multiple of the smallest one. We say the symmetric
Boolean function g : {0,1}" — {0,1} is periodic with period D if D < n and there is a
function f that represents g such that f is periodic with period D. (Note that in fact such
a function f, if it exists, is uniquely determined.)

For example, define M, : Z — {0,1} as

)1, ifk#0 (mod q)
My (k) = { 0, otherwise.
In [3] it is noted that if p is a polynomial of degree d and the number of distinct prime
factors of ¢ is r, then the period of My(p(z1,...,z,)) is D = O(d").

While a symmetric, periodic Boolean function g : {0,1}™ — {0,1} has a finite domain,
the function f representing g is defined on Z. Therefore, when we consider n as variable
in later sections, we are referring to f instead of g. Note that in turn, f defines a sequence
of symmetric Boolean functions g,, : {0,1}™ — {0,1}, for each m € N. Regarding the
correlation, we will also write C,,(f,g') for Cy,(g,g'), where ¢’ is another Boolean function.



3 General Symmetric Functions

Let ¢1,92 € N and p; and py be symmetric polynomials. We derive in this section a formula
for Cy,(My, (p1), Mg, (p2))- In fact, we don’t need any special properties of these functions.
Our proof depends only on the periodicity of My, (p1) and My, (p2), and therefore, we
consider the correlation between any two symmetric Boolean functions in terms of their
periods.

Theorem 3.1. Let g1, g2 : {0,1}" — {0,1} be symmetric Boolean functions represented
by fi and fa, respectively, and let D be a period of f; + fo. Let & denote the D' root of
unity e2™/P and Aj=1+ £€7J. Then

1 b1 D-1
Cn(91,92) = 5D Z( )fl(k)+f2 Z gkj)\n
— ] 0

Proof. Since g; and g2 are symmetric, the correlation between g; and go becomes

Crn(g1,92) = 2~ ﬂz fl(k +f2(k) (k)

Since D is a period of fi+ f2, we can partition this sum into D sums, one for each remainder
modulo D, as follows. For £k =0,...,D —1 let

Then we have

Cn(g1,92) = 27" Z(—l)fl(k)+f2(k)7”k(n)-
k=0

The proof is completed by the following lemma, showing that each r; can be written as
claimed in the theorem. O

D=1
Lemma 3.2. 74(n) = 5 3 fkf)\?, fork=0,...,D—1.
=0

Proof. Using the recurrence relation for the binomial coeflicients, we have

Tr(n) = Z l(n;1> + <?:i>] =rg(n—1)+rpg_1(n—1)
j = k (mod D)

for all k € {0,...,D — 1}, where index k£ — 1 is taken modulo D. Let us define vector r(n)

as o (n)
r1(n)

’I‘D_l(’n,)



By the above recurrence relation, we can compute r(n) by multiplying r(n — 1) with some
appropriately defined matrix M,

r(n) = Mr(n—1),

where M is the D x D matrix

10 00 0 1
11 00 0 0
0110 00
M — 0 011 0 0
o000 ---11

Hence, we get r(n) = M"r(0), where the components of r(0) are ro(0) = 1 and r5x(0) = 0
for k=1,...,D —1. It remains to compute the n-th power of the matrix M. The simplest
way to do this is to diagonalize M. The eigenvalues of M are the A;, for j =0,...,D —1,
and an eigenvector corresponding to A; is

(1 €9 ¢2 . . . gf(Dfl)j)T.

Since the eigenvectors are linearly independent, we actually can diagonalize M. The
diagonalizing matrix V is defined as having the D eigenvectors as its columns, (V) ; =
€%, which is a Vandermonde matrix. The diagonal matrix A has the eigenvalues as its
diagonal entries, the j-th diagonal entry of A being the eigenvalue for the eigenvector in
the j-th column of V, A;.

It is easy to verify that %V is unitary (i.e., VV* = V*V = DI, where V* denotes
the Hermitian conjugate of V and I is the identity matrix) using the fact that

Dz‘lékj_ D, ifk=0,
= “ ] 0, otherwise.

Hence M = %V*AV, and M" = %V*A"V. Therefore, we get

n

1 1 %
0 1 L
wn) = Avearve) = Lviarv || = Lyvean| | Lye|
D D . D . D
0 1 '
AD_1
From the definition of V, the lemma now follows immediately. 0

The sum in Theorem 3.1 can also be written as

1 D1
Cnl(g1,92) = mD z SjA;'La
j=0



where
D—1

5j = Z(_l)fl(k)+f2(k)§kj_
k=0

Observe that the largest eigenvalue is A\g = 2, and that all other eigenvalues are smaller.
In fact, the second largest eigenvalue A; has norm |1 + &| = 2cos(n/D). Thus, while the
largest term in the above sum (when j = 0) is constant so/D (i.e., independent of n, if
D is constant), the second largest term (when j = 1) has norm % cos(mw/D)™ which is
exponentially small compared with the first term (if D is a constant or a slowly growing
function in n). This yields,

Corollary 3.3. Let g1, g2 : {0,1}" — {0,1} be symmetric Boolean functions represented
by fi1 and fs, respectively, and let D be a period of fi + f2. Let so = ZkD:—OI(_l)fl(kag(/c)_
Then .

| Cn(g1,92) — 50| = O(cos(mw/D)"™).

We can now easily prove the main corollary of this section, which states that the fraction
of the time that any symmetric function with a small odd period can agree with parity is
exponentially close to 1/2.

Corollary 3.4. Let g : {0,1}" — {0,1} be a symmetric Boolean function with odd pe-
riod D. Let & denote the parity function. Then

|Cnlg,®)| = Ofcos(x/(2D))") = O ((1 - 555 )
22D
Proof. Let f represent g. Observe that My represents @. Since D is odd, the period of

f + M, is 2D. Furthermore, we have (—1)/k)+M2(k) — (_1)f(k)+k — _(_1)f(k+D)+k+D
and hence

2D-1
so = Y (—1)fEFk =g,
k=0
Now, the claim follows from Corollary 3.3. O

Let us consider a sequence of symmetric functions gy, : {0,1}" — {0, 1} having different
(odd) periods D(n). It follows from Corollary 3.4 that C),(gn,®) is exponentially small in
n as long as D(n) = O(n'/?~¢), for some € > 0.

If we choose g, = My(pyp), for odd ¢ and some symmetric polynomial p, of de-
gree d(n), then the period of g, is odd (see Theorem 4.7 below) and is bounded by

O(d(n)©89). Therefore, when the degree d(n) is bounded by O(nm_f), for some € > 0,
then |Gy (My(pn), ®)| = 279,

4 Zeroes in the Correlation With Parity

In the previous section, we have seen that the correlation of parity with any symmetric
function of small, odd period must be exponentially small. Remarkably, we find that for
many symmetric functions the correlation is identically zero for infinitely many n, spaced



at regular intervals if the period is constant. When a function has this property, we can
compute the zeroes (i.e., those values of n for which the correlation is zero). In this section,
we first characterize which symmetric functions have this property. Then we turn our
attention to a special class of functions (the elementary symmetric polynomials modulo an
odd number) to illustrate how to compute the zeroes.

It is easy to see that the correlation of a constant function with parity is zero for all n.
For any non-constant symmetric function, the following theorem characterizes almost all n
for which the correlation with parity is zero.

Theorem 4.1. Let f : Z — {0,1} be a non-constant function with odd period D. There
exists an integer ng! such that for any n > ng, the following conditions are equivalent.

(a‘) Cn(f7®):07
(b) f(k)=n+1+ f(n—k) (mod2), for k=0,...,D—1.

Proof. Let ¢ denote the 2D root of unity e™/P and Aj=1+¢ ~J. Then, by Theorem 3.1,

1 2D—-12D-1 BVik ok
'Cn(£,0) = o5 2 » (~DIEHENT

J

2D—1 )
::52m<zvﬂm“wV»

k=0

where the second equality holds because £2P~7 = Ej and A\op_; = \j, so that the second
half of the j-sum (D < j < 2D —1) is the complex conjugate of the first half. Let us define

2D-1

k=0
tj(n) = Re(s;A}),

for  =0,...,2D — 1. Then we have
1 D1
2"Cu(f,@) = 5 D ti(n).
=0

Note that if j is even, we have that s; = 0, and hence ¢;(n) = 0. This holds because
¢k+D)i = ¢ki for even j, and (—1)¥*P = —(—1)k. Note also that for any 0 < j < D — 1,
we have tj(n) = tap_j(n) and that tp(n) = 0 since Ap = 0.

The proof is completed by the following three lemmas. O

When Cy(f,®) = 0, there are potentially two reasons for this: either all the ¢;(n) are
zero or several nonzero tj(n) cancel each other. Our first lemma states that the latter
cannot happen for large enough n.

'In fact, ng depends only on D, and not on f.



Lemma 4.2. There exists an integer ng such that for any n > ny,
Cn(f,®) =0 <= tj(n) =0, forall0<j<2D-1.

Proof. Sincet;(n) = tap—;(n), it suffices to argue for 0 < j < D—1. Suppose C,(f,®) = 0.
We can express t;(n) as?

] m™j
) = lsyl2cos(7 )" cos(arg(s) — 7). )
Clearly, we have |tj(n)] < |s;]]2 cos(%ﬂ". On the other hand, since the cosine is

periodic in n, for any j there exists a constant ¢; > 0 (i.e., ¢; does not depend on n) such
that

ti(n) £0 = [t;(n)] > ¢; |2cos(%)|”.

Hence, each [tj(n)| is either zero or in a constant range of |2 cos(ﬁﬂ . (Note that s;
doesn’t depend on n.)

Because |2 cos(34)|™ dominates |2 cos(T5~ ]+1 )|" for large n and j < D, any tj(n) # 0
dominates all the t; ( ) for j < j' < D. Thus if jo is the least j such that ¢;(n) ;é 0, then
the subsequent terms cannot cancel ¢;,(n), and hence, C,(f,®) # 0. Therefore, tj(n) =0
forall0<j;<D-—1. O

Using equation (1), we can characterize when a t;(n) is zero in terms of the s;. Since
|2 cos(55)|™ (and hence t;(n)) is zero for j = D, we have to exclude the case j = D in the
next lemma.

Lemma 4.3. Let 0 < j <2D — 1, j # D. Then t;(n) =0 < s; = —{"J3;.

Proof. If s; = 0, then the lemma is trivial. Otherwise, for any j # D,

tj(n) =0 <= cos(arg(s;) — 7)) =0
™mj T
<~ Ell arg(Sj)—2—D = E'f‘lﬂ'
— =1 eZiarg(Sj) _ 62 (gg-F +im)
— |3j|eiarg(5j) — _|3j|e*1arg(5j)e%i"j
= s; = —&"3;.

Lemma 4.4. The following conditions are equivalent.
(i) s; = —&Vsg, for j=0,...,2D—1,j # D,
(ii)) f(k)=n+1+ f(n—k) (mod2), for k=0,...,D—1.

2 Any complex number z # 0 can uniquely be written as z = |z|(cos p+isin @) = |z]e’?, where 0 < ¢ < 27.
¢ is called the argument of z, ¢ = arg z. Hence Re(z) = |z| cos arg(z).



Proof. Since (—1)7(k)+k ¢=ki has period 2D, we have

2D—-1

_5"1'3—]. = ¢ Z (_1)f(k)+k gk
k=0
n+2D-1

— _gnJ Z (_1)f(k)+k£—kj

k=n
n+2D—-1
— (_1)n+1 Z (_1)f(k)+nflc £(nfk)j
k=n
2D-1 , Lo
— Z (_1)n—|—1—|—f(n—lc )+k fk ]’
k'=0

where the last equality was obtained by changing the summation variable to ¥ = n — k.
Now, if condition (ii) is true, then it is clear that

2D—1 ]
8j = Z (_1)n+1—|—f(n—k)—|—k fk],
k=0

which yields condition (i).
Conversely, if condition (i) is true then, for any 0 < j < 2D —1, j # D,

2D—-1 2D—-1

Z (=1)T k) +k ¢k — Z (=11t (n=k)+k ki (2)

k=0 k=0

Note that these sums are the Fourier transforms of the functions (—1)%t/(%) and
(—1)ktnt1+f(n=k) " respectively. Therefore, if equation (2) held for all j, i.e., including
j = D, then we could immediately conclude that the functions are equal. But it is not
obvious that equation (2) holds for j = D when n is even. Nevertheless, we can perform
an inverse Fourier transform by using the relation

2351 fw—yy<_ 2D —1 ifk =k
j=0,j#D ] (=) K+ otherwise.

Now multiply the left and right hand sides of equation (2) by ¢ —k'7 and sum over j from 0
to 2D — 1, excluding j = D. This yields, for any 0 < k' < D — 1,

2D—-1 2D—-1
2D(_1)f(k’) _ Z (_1)f(k) — 2D(_1)n+1+f(n—k’) _ Z (_1)n+1+f(n—lc)_

Note that the last sum in this equation is equal to (—1)"+! 3201 (—1)/()| Hence, we get
2D—1

(FD)IH) = (1R (1 () Y (-1, 3
k=0



To show condition (ii), it suffices to prove that the second term of the right hand side of
equation (3) is 0. This is certainly true when 7 is odd. Let n be even. Then equation (3)

becomes
1 2D-1

_)WE) Lok _1)f(®)
(~1)7®) ¢ (-1) 53 ().
k=0

Observe that the right hand side is independent of k', and hence both sides are. The left
hand side can be £2 or 0. If it is +2, then f is constant, which contradicts the hypothesis
of the theorem. Hence, the left hand side is 0 and we conclude that 3325 (—1)f*®) = 0.
Thus, the second term of the right hand side of equation (3) is indeed zero, and condition
(ii) follows. (Observe that sp = Zigal(—l)ﬂkaf’w = Y2Pol(—1)7%) = 0. Hence,
condition (i) implies that in fact s; = —£™5;, for all 0 < j < 2D —1.) |

Observe that in both conditions (i) and (ii) in the last lemma, we can equivalently
replace n by m, where m (0 < m < 2D) is the residue of n modulo 2D. Likewise, we can
make this replacement in Theorem 4.1(b). Therefore, to determine whether Cy(f,®) is
zero for infinitely many n, it is only necessary to find an m such that 0 < m < 2D —1 and

f(k) = m+1+f(m—k) (mod?2), fork=0,...,D—1. (4)

Corollary 4.5. Let f: Z — {0,1} be a non-constant function with odd period D. There
is an m € {0,...,2D — 1} such that equation (4) holds iff Cy,(f,®) = 0 for all (large
enough) n such that n =m (mod 2D).

Next, we show that if there exists an m for which equation (4) holds, then it is unique.
Thus, in fact, all zeros in the correlation of f with parity are at the points n; = m + 2] D,
for a fixed m, from a certain size of [ on. Note that there may be additional zeroes for
small values of n.

Proposition 4.6. Let f : Z — {0,1} be a function with odd period D. Then equation (4)
holds for at most one m € {0,...,2D — 1}.

Proof. Suppose there are mg, mi, where 0 < mo < m; < 2D, such that f(k) =m; +1+
f(mj—k) (mod 2), forall kand j =0, 1. It follows that f(mo—k) = m; —mo+ f(m +
2D — k) (mod 2), for all k. Let k' = mg+ 2D — k. Then

f(K) = mi —mo+ f(K' +m1 —mg) (mod 2)

for any k'.

Next, we argue that m; —mg must be even. Suppose m1 —my is odd. Then f(k') =1+
f(E'+m1—mp) (mod 2) for all k. Hence, applying this a second time with the argument
k' +mq —myg instead of k', we get f(k') =1+ 1+ f(K'+2(m1 —myg)) = f(K' +2(m1 —myg))

(mod 2), and therefore f(k') = f(k' + 2(m1 — myg)) for any k' > 0. By our assumption
2(m1—myp) > 0, and hence it is a period of f. Recall that any period of f must be a multiple
of the smallest period D. Since D is odd, m; — mg must be a multiple of D. Furthermore,
since m; — mo < 2D, it follows that m; — mg = D. But then f(k') = 1+ f(k' + D)

(mod 2), which contradicts the fact that D is the period of f.

10



Since m; — my is even, we have f(k') = f(k' + m; — my) for any ¥’ > 0. Suppose
m1—myg > 0. Then it is a period of f and therefore a multiple of D. Since D is odd, mi—myg
is also a nonzero multiple of 2D. But this contradicts the fact that 0 < m; — mg < 2D.
We conclude that mg = m;. O

We now compute the zeroes in the correlation between parity and any elementary
symmetric polynomial modulo an odd number g. When ¢ is prime it is easy to see, by
Lucas’ theorem (see [13]), that the period of (%) mod ¢ is ¢* (in k), where b is the smallest
integer such that d < ¢°. The formula for the period of the binomial coefficients modulo g
when ¢ is composite is more complicated and is given in the following theorem proved by
S. Zabek [15].

Theorem 4.7. [15] Let ¢ = p{* ---pgr, where the p;’s are the prime factors of g, d > 0,

and b; = |logp,(d)]. Then the period of (§) mod ¢ is [Tj_, p;ﬁbj'

It suffices to note here that when ¢ is odd the period is a product of its prime factors
and is therefore odd. Note also that the period of (Z) mod ¢ is a multiple of the period of
M,(eq), and hence, this period is odd too.

It follows from Corollary 3.4 that for any d, M,(eq(x)) has exponentially small correla-
tion with parity. Furthermore, we have

Theorem 4.8. Let ¢ be odd and D be the period of M,(eq(z)). Then, for sufficiently
large n, Cp(My(eq), ®) = 0 iff n = ID + d — 1, where [ is any integer such that | = d
(mod 2).

Proof. In order to apply Theorem 4.1, we need to derive an appropriate symmetry
property of the binomial coefficients. We use the following basic idendity which holds for

any integer k.
k d—1—k
= —1)¢
(@) = (a7

Mq(<Z>) - Mq<(d‘;"“)).

Define m to be d — 1, if d is even and D 4+ d — 1, if d is odd, so that m is odd. (Recall that
D is odd.) Then we have for any integer k

Mq(<Z)) = m+1+Mq(<md_k>) (mod 2).

Now, the claim follows from Theorem 4.1 and Proposition 4.6. O

and therefore

5 Conclusions and Open Problems

We have investigated the correlation between two symmetric Boolean functions. Our tech-
nique is to use exponential sums to estimate this important quantity. For the class of

11



symmetric functions, we are able to obtain closed form solutions for the sum. The more
interesting result would be to give a similar estimate for any low degree polynomials mod-
ulo an odd integer against the parity function, say. The use of exponential sums points
to the possibility of applying more sophisticated techniques. There is a strong connection
between our sum and the (generalized) Gauss sum or Kloosterman sum (see, e.g., [8]) which
we briefly illustrate below.

Consider a polynomial f(z1,...,z,) with integer coefficients and degree d on n boolean
variables. We consider the correlation between, e.g., this polynomial modulo 3 and the
parity function @. Let w be the third root of unity e2™/3. Then

wf(zl,...,zn) +w—f($1,...,zn) +1 n
3

Culf,®) = 2 Z

{z1,....zn}€{0,1}"
1 n

= Re Z u)f(wl""’w")(—]_)zjzl $j.

—2
20743 {z1,...,zn}€{0,1}"

If we let x be a nontrivial character modulo 3, by rearranging —1,1 for 1,0, we have

Cn(f, @) Re Y wlommly(a). - x(en),

~ on-23
{Z150 sz }EFY

which is precisely the real part of a generalized Gauss sum.

A lot of work has been done in order to estimate sums of this type, especially those
results connected with the theorems and conjectures of Weil and Deligne (see [11],[9] for
more information). The sums encountered there are usually of the type where one has a
fixed number of variables, and considers the sum as the base field is successively extended
to degree n. In contrast, we have the situation where the number of the variables n is
growing but the field is fixed. It would be nice to be able to apply some of their techniques
here. At the same time a solution to our problem without their machinery would also be
of independent interest to number theory.
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