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Abstract. On a manifold of dimension at least six, let (g, τ) be a pair consisting
of a Kähler metric g which is locally Kähler irreducible, and a nonconstant smooth
function τ . Off the zero set of τ , if the metric ĝ = g/τ2 is a gradient Ricci soliton
which has soliton function 1/τ , we show that ĝ is Kähler with respect to another
complex structure, and locally of a type first described by Koiso, and also Cao.
Moreover, τ is a special Kähler-Ricci potential, a notion defined in earlier works
of Derdzinski and Maschler. The result extends to dimension four with additional
assumptions. We also discuss a Ricci-Hessian equation, which is a generalization
of the soliton equation, and observe that the set of pairs (g, τ) satisfying a Ricci-
Hessian equation is invariant, in a suitable sense, under the map (g, τ)→ (ĝ, 1/τ).

1. Introduction

In this paper we study pairs (g, τ) on a manifold M of dimension larger than two,
where g is a Riemannian metric and τ is a smooth nonconstant function. In this
context, an important role will be played by the map (g, τ) → (ĝ, τ̂) = (g/τ 2, 1/τ),
considered as an involution on the set of all pairs satisfying obvious restrictions (see
§2.2). We will call (ĝ, τ̂) the associated pair of (g, τ).

We say that a pair satisfies a Ricci-Hessian equation if

(1.1) α∇dτ + r = γ g

holds for the Hessian of τ , the Ricci tensor r of g, and some C∞ coefficient functions
α and γ. If α and γ are constant, the pair, or sometimes just the metric, is called a
gradient Ricci soliton, and if α is additionally nonzero, τ is called the soliton function.

Before stating our main result, we note a closely related fact: the set of pairs
satisfying a Ricci-Hessian equation is invariant under our involution. The latter is
well-defined once the domain of allowed pairs is further restricted (see §2.2). In this
setting we call the involution the duality map.

A part of our main result may be stated informally as follows. Consider two
subsets of the set of all pairs on M : those for which the metric is Kähler (and locally
irreducible in a suitable sense, see below), and pairs which are gradient Ricci solitons.
Assuming a restriction on the dimension of the manifold, if the involution maps an
element of the first subset to an element of the second one, the latter element lies in
the intersection of the two subsets. More precisely,

Theorem A. Let M be a manifold of dimension at least six, and (g, τ) a pair as
above, with g a Kähler metric. Suppose g is not a local product of Kähler metrics in
any neighborhood of some point of M . If the associated pair (ĝ, τ̂) is a gradient Ricci
soliton, then, on Mrτ−1(0), the metric ĝ is Kähler.
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The complex structures giving the Kähler structures of g and ĝ are oppositely
oriented. Also, with extra assumptions (see paragraph following Remark 3.2), the
result extends to real dimension four.

The proof, in fact, yields much more information on both pairs. First, τ is a
special Kähler-Ricci potential. This notion (Definition 3.4) was first defined in [6],
and implies that τ is a Killing potential, and that (1.1) holds in some (generically
nonempty) open subset of the manifold. Second, the Kähler-Ricci soliton (ĝ, τ̂) is
locally of a type first described by Koiso in [10] (see also [4]).

Although our result is of a local character, one should note that there exist compact
manifolds, specifically toric Fano ones, which admit Kähler-Ricci solitons [12], most
of which are not of the form found by Koiso.

In the following we describe a few related problems of a broader scope. The in-
volution above is defined in part via a conformal change, and one can ask whether,
starting with a Kähler metric g, one can find a metric g/τ 2, for some function τ as
above, which is a Ricci soliton. The case where g/τ 2 is Einstein, was the subject of
the study of [6, 7, 8], where local and global classifications were given, and, in all even
dimensions larger than four, τ turns out to be, in fact, a special Kähler-Ricci poten-
tial. In dimension four this need not be the case, and even for compact manifolds, a
counterexample was recently shown to exist in [5].

For the case of Ricci solitons, a similar general classification is not known, even if
one assumes that τ is a special Kähler-Ricci potential. Our result can be considered
a first step in an attempt to answer this question, for the case where the resulting
Ricci soliton has a very special soliton function. In fact, an alternative formulation
of Theorem A is possible, which trades an assumption on τ with a more general
allowed soliton function: one assumes that τ is a Killing potential, and then the
conclusion follows not just for the associated pair, but for any pair (ĝ, f), where f
is a (nonconstant smooth) function locally dependent only on τ . This observation
follows using Proposition 3.1 below, which also serves to motivate the expression
defining τ̂ .

In various talks, G. Tian has asked whether there exist compact non-Kähler Ricci
solitons in dimension four. Extending the question to all dimensions, one may answer
it affirmatively via constructions involving products. Ignoring these fairly simple
examples, one can try to produce such a Ricci soliton in the conformal class of a
Kähler metric (at least in dimension four, it is not too difficult to see that there can
be no more than two Kähler metrics in a given conformal class). Our result can be
regarded as implying that, in a special case, such an attempt will fail.

Finally, recall the result of Schur, stating that if r = φ g for some function φ, then,
except in dimension two, φ must be constant. A similar principle holds for Kähler-
Ricci solitons, for the coefficient of g, and one may ask whether it holds for any
Ricci soliton, or, equivalently, whether there exist pairs for which (1.1) holds with
the coefficient of ∇dτ constant, but not the coefficient of g. In unpublished work
which may be regarded as a global extension of this paper, A. Derdzinski has shown
that such pairs do exist on compact manifolds. In fact, on these manifolds there are
families of pairs (g, τ), with g Kähler, for which the associated pairs (ĝ, τ̂) are each
of this type, and are obtained by deforming one of the Einstein metrics in [8].

This paper is arranged as follows. Riemannian preliminaries on duality and Ricci
solitons appear in §2. Consequences of the Kähler condition for (1.1), along with a
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review of the basic properties of metrics with a special Kähler-Ricci potential, are
given in §3. Ordinary differential equations associated with a large class of such
metrics are studied in §4, especially in relation to the assumption that the associated
pair forms a Ricci soliton, and we give an analysis of their solution set. After recalling
the geometric structure of a Kähler metric admitting a special Kähler-Ricci potential,
and presenting a duality result in this context in §5, we summarize our results in §6
by proving Theorem 6.1, from which Theorem A easily follows. Our conventions
throughout closely follow [6].

2. Ricci-Hessian equations, duality and Ricci solitons

2.1. Conformal changes. Let (M, g) be a Riemannian manifold of dimension n,
and τ : M → R a nonconstant C∞ function. We write metrics conformally related
to g in the form ĝ = g/τ 2, and set Q = g(∇τ,∇τ). The metric ĝ will always be
considered on its domain of definition, i.e. the set Mrτ−1(0). With respect to ĝ, the
Hessian of a given C2 function f on Mr τ−1(0) is given by

(2.1) ∇̂df = ∇df + τ−1[2 dτ � df − g(∇τ,∇f)g],

where dτ � df = (dτ ⊗ df + df ⊗ dτ)/2. We will be concerned primarily with the case
where df∧dτ = 0, i.e., at points where dτ 6= 0, f is given locally as a composition f =

H ◦τ . In this case, (2.1) becomes ∇̂df = f ′∇dτ +(f ′′ + 2τ−1f ′) dτ⊗dτ−f ′ τ−1Qg,
with ′ denoting differentiation with respect to τ . For the particular choice of f = τ−1,
this expression simplifies:

(2.2) ∇̂dτ−1 = −τ−2(∇dτ − τ−1Qg), if ĝ = g/τ 2.

Finally, recall the conformal change expression relating the Ricci tensors of g and
ĝ, with ∆ denoting the Laplace operator:

(2.3) r̂ = r + (n− 2) τ−1∇dτ +
[
τ−1∆τ − (n− 1) τ−2Q

]
g.

2.2. Ricci-Hessian equations and duality. With M , g, τ and other notations as
above, we say that the pair (g, τ) satisfies a Ricci-Hessian equation on M (or often
just on an open set of M), if (1.1) holds there. We record this equation more explicitly
as

(2.4) α∇dτ + r = γ g, with τ nonconstant,

where ∇dτ and r are as above, and α, γ are C∞ coefficient functions. What we
will call duality may be regarded informally as an involution on the space of pairs
satisfying (2.4):

Proposition 2.1 (Derdzinski). Let M have dimension n > 3, and suppose a pair
(g, τ) as above satisfies a Ricci-Hessian equation (2.4) on M . Then the pair (ĝ, τ̂) =

(g/τ 2, 1/τ) also satisfies a Ricci-Hessian equation α̂∇̂dτ + r̂ = γ̂ ĝ, on Mrτ−1(0),
with coefficients

(2.5) α̂ = (n− 2)τ − τ 2α, γ̂ = γτ 2 − (1 + ατ)Q+ τ∆τ.
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In fact, letting β denote the coefficient of g in (2.3), one has, by (2.2) and (2.3),

α̂ ∇̂dτ̂ + r̂ = ((n− 2)τ − τ 2α)(−τ−2∇dτ + τ−3Qg) + r + (n− 2)τ−1∇dτ + βg

= α∇dτ + r + (α̂τ−3Q+ β)g = (γ + α̂τ−3Q+ β)τ 2ĝ,

and one easily checks that the last expression is γ̂ ĝ.

Remark 2.2. As mentioned in the Introduction, the pair (ĝ, τ̂) will be called the asso-
ciated pair. It is not necessarily defined on all of M . Hence, to consider (g, τ)→ (ĝ, τ̂)
as an involution, one must regard it as having a domain consisting, for example, of
pairs which are defined on some open set of M . Furthermore, in order to understand
Proposition 2.1 as indicated in the Introduction, i.e. as a statement about an invari-
ant set for this involution, one must further require that the pairs are defined on some
open subset that does not contain points where ∇dτ is a multiple of g. This is nec-
essary, since otherwise, a pair (g, τ) may not determine the coefficients α, γ uniquely
at every point of M . Finally, further such restrictions may result from considering
pairs satisfying (2.4) for coefficients α and γ which have, say, isolated singularities.

To verify the involutive property, one easily checks that ̂̂α = α, while ̂̂γ = γ follows
from this, as g, τ and α determine γ uniquely. One can also check the last relation

directly, using the following formulas for the two functions Q̂ = ĝ(∇̂τ̂ , ∇̂τ̂) and ∆̂τ̂ :

Q̂ = τ−2Q, ∆̂τ̂ = nτ−1Q−∆τ.

Remark 2.3. For any pair (g, τ) satisfying (2.4), one can produce another such pair
by a (nonconstant) affine change in τ . If this affine change involves only a change
by an additive constant, it leaves equation (2.4) invariant. This freedom induces, of
course, a freedom in the choice of τ̂ , which will be exploited in Proposition 5.1.

2.3. Ricci solitons. A Ricci soliton [9] is a Riemannian manifold (M, ĝ) such that
£vĝ+ r̂ = e ĝ for some constant e and C∞ vector field v on M . Here £v is the Lie
derivative and r̂ denotes the Ricci tensor of ĝ. We will only be interested in gradient
Ricci solitons, in which M admits a C∞ function f : M → R with

(2.6) ∇̂df + r̂ = e ĝ for a constant e.

We will call f the soliton function. By a result of Perelman [11, Remark 3.2], every
compact Ricci soliton (M, ĝ) is a gradient Ricci soliton. Recall also that a metric is
Einstein if its Ricci tensor is a multiple of it.

Thus a gradient Ricci soliton is, alternatively, a pair (ĝ, f) satisfying a Ricci-Hessian
equation with constant coefficients. Using (2.2) and (2.3), or, more naturally, the
duality of Proposition 2.1 (slightly modified to allow τ̂ to be multiplied by a constant),
we have

Proposition 2.4. Let (M, g) be a Riemannian manifold of dimension n > 2 and τ a

nonconstant C∞ function. The Ricci soliton equation ∇̂d (bτ−1) + r̂ = e ĝ, with b a
constant, holds for ĝ = τ−2g on Mrτ−1(0), if and only if g satisfies a Ricci-Hessian
equation (2.4) with coefficients

(2.7) α = (n− 2) τ−1 − b τ−2, γ = e τ−2 − τ−1∆τ +
(
(n− 1) τ−2 − b τ−3

)
Q.

Remark 2.5. The introduction of the constant b serves to compare with the confor-
mally Einstein case, which occurs when b = 0: relations (2.7) with b = 0 are implied
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by [6, (6.1) and (6.2)], which hold in that case. It follows from this that an Einstein
metric cannot also satisfy a Ricci soliton equation (2.6) with the soliton function
a nonzero multiple of τ−1. Note that for other nonconstant soliton functions, this
is possible. Finally, the constant b also plays a role in the proof of the alternative
version, mentioned in the Introduction, of Theorem A.

Remark 2.6. Here, in Proposition 3.1 and in Remark 3.2 we briefly consider conformal
changes of g, which yield a gradient Ricci soliton ĝ having a more general soliton
function f . First, if f is an arbitrary smooth function, applying equations (2.1) and
(2.3) yields

r + (n− 2)τ−1∇dτ +∇df + 2τ−1 dτ � df
=

[
eτ−2 + (n− 1)τ−2Q− τ−1∆τ + τ−1g(∇τ,∇f)

]
g.(2.8)

If now df ∧ dτ = 0, this gives

r +
(
f ′ + (n− 2) τ−1

)
∇dτ +

(
f ′′ + 2τ−1f ′

)
dτ ⊗ dτ

=
[
e τ−2 − τ−1∆τ +

(
(n− 1)τ−2 + τ−1f ′

)
Q
]
g.(2.9)

As an aside we note that a particular choice for f will eliminate the Hessian term.
Namely, setting f = −(n − 2) log |τ |, the metric ĝ is a Ricci soliton metric precisely
when

r− (n− 2) τ−2 dτ ⊗ dτ =
[
τ−2 (e+Q)− τ−1∆τ

]
g .

However, this simple equation implies that g cannot be Kähler (unless n = 2 or
τ is constant). This is one other reason, apart from duality considerations, and
Proposition 3.1 below, why we will focus on the case of a soliton function proportional
to τ−1.

3. Ricci-Hessian equations and special Kähler-Ricci potentials

3.1. The Ricci-Hessian equation and Ricci solitons. Let (M,J) be a complex
manifold, with J the associated almost complex structure. Suppose g is a Kähler
metric on M , i.e a Riemannian metric for which J is parallel. Let (g, τ) be a pair
satisfying the Ricci-Hessian equation (2.4) on M . The Kähler property implies that
both g and r are Hermitian, hence so is ∇dτ on the support of α. Often in applica-
tions, this support will be a dense set in M . This property of ∇dτ is equivalent to
the statement that τ is a Killing potential, i.e. a C∞ function for which J∇τ is a
Killing vector field (cf. [6, Lemma 5.2]).

In the Kähler case, if g/τ 2 is a Ricci soliton, certain restrictions on the soliton
function force it to be proportional to, or at least affine in τ−1.

Proposition 3.1. Let (M, g) be a Kähler manifold with a Killing potential τ , and
ĝ = g/τ 2 a Ricci soliton with a smooth τ -dependent soliton function f . Then f is an
affine function in τ−1.

Proof. As (2.9) holds under our assumptions, and dτ ⊗ dτ is the only term in it that
is not Hermitian, its coefficient f ′′+2τ−1f ′ must vanish, implying the conclusion. �

Remark 3.2. If the Killing assumption above is replaced by (2.4) for some τ , α not
identically zero and γ, the conclusion still follows on the support of α. If one then
drops the τ -dependence assumption on the soliton function f , all that (2.4) implies,
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in combination with (2.8), is that ∇df + 2τ−1dτ �df = (2τ 2)−1£(τ2∇f) g is Hermitian
on the support of α.

We will be especially interested in the case where α and γ in (2.4) are functions of
τ . We note that, this always holds for α in (2.7), while it holds for γ there if both
dτ ∧d∆τ = 0 and dτ ∧dQ = 0. One may attempt to weaken these assumptions using
methods akin to those of [6, (6.5) and Proposition 6.4]. We choose to follow here the
quicker approach of [1, §1.4], which, however, works only for m > 2.

Proposition 3.3. If (2.4) holds for a Kähler metric of complex dimension m > 2,
and dα ∧ dτ = 0, then dγ ∧ dτ = 0.

Proof. Composing (2.4) with J and applying d to the result gives dα ∧ d(ı∇τω/2) =
(dα/dτ) dτ ∧ d(ı∇τω/2) = dγ ∧ ω, using [6, (5.3)] (here ω is the Kähler form of g).
Exterior multiplication with dτ gives dτ ∧ dγ ∧ ω = 0, and the result follows because
the operation ∧ω is injective on 2-forms for m > 2. �

Thus, the coefficients (2.7) of the Ricci-Hessian equation will be functions of τ ,
provided (M, g, τ) is Kähler of dimension m > 2, and g/τ 2 is a Ricci soliton with
soliton function proportional to τ−1.

3.2. Special Kähler-Ricci potentials. Below, we denote by Mτ the complement,
in a manifold M , of the critical set of a smooth function τ . For a Killing potential
on a Kähler manifold, Mτ is open and dense in M .

Definition 3.4. [6] A nonconstant Killing potential τ on a Kähler manifold (M,J, g)
is called a special Kähler-Ricci potential if, on the set Mτ , all non-zero tangent vectors
orthogonal to ∇τ and J∇τ are eigenvectors of both ∇dτ and r.

We will call a metric admitting a special Kähler-Ricci potential an SKR metric,
and occasionally will declare (g, τ) to be an SKR pair. Among the more important
characteristics of such a metric is the existence of a Ricci-Hessian equation. More
precisely

Proposition 3.5. [6, Corollary 9.2, Remarks 7.1 and 7.4] Let (M, g) be a Kähler
manifold of complex dimension m ≥ 2. If (2.4) holds for some C∞ functions α, γ
and (nonconstant) τ , with dα ∧ dτ = 0, dγ ∧ dτ = 0 and α dα 6= 0 everywhere in
Mτ , then τ is a special Kähler-Ricci potential. Conversely, if (M, g) admits a special
Kähler-Ricci potential τ , then (2.4) holds on an open subset of Mτ , namely away
from points where ∇dτ is a multiple of g.

Remark 3.6. In [6], we have actually written the Ricci-Hessian equation in the form
∇dτ + χr = σ g. Note that the domains of the coefficient functions may vary as one
switches between these two forms. In general, any statement involving the Ricci-
Hessian equation of an SKR metric refers to the largest domain on which (2.4) holds.
Moreover, this change results in a slightly different statement of the first part of
Proposition 3.5, while to get the second part (and its proof), one need only to switch
r with ∇dτ in [6, second paragraph of Remark 7.4].

Corollary 3.7. If (M, g) is Kähler, of complex dimension m > 2, and ĝ = g/τ 2 is a
Ricci soliton, with soliton function bτ−1, where b is a constant, then τ is a special
Kähler-Ricci potential.
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Proof. We combine Propositions 2.4, 3.3 and 3.5, except that for α in (2.7), α dα = 0
on the set where τ = (n − 2)/b and on the set where τ = 2b/(n − 2), so that τ is
a special Kähler-Ricci potential, and hence a Killing potential away from these sets.
By [6, Lemma 5.2], ∇dτ is Hermitian away from these sets, yet it is also clearly
Hermitian in the interior of each of these sets, so that by continuity, it is Hermitian
on all of Mτ . Again using [6, Lemma 5.2], this means that ∇τ is holomorphic on Mτ ,
which implies that the interiors of the above mentioned two sets are empty. As the
SKR condition is defined by equalities, continuity now implies that τ satisfies it on
all of Mτ . �

By [6, Definition 7.2, Remark 7.3], the SKR condition on (g, τ) is equivalent to
the existence, on Mτ , of an orthogonal decomposition TM = V ⊕ H, with V =
span(∇τ, J∇τ), along with four smooth functions φ, ψ, λ, µ which are pointwise
eigenvalues for either ∇dτ or r, i.e., they satisfy

(3.1)
∇dτ |H = φ g|H, ∇dτ |V = ψ g|V ,

r|H = λ g|H, r|V = µ g|V .
This decomposition is also r- and ∇dτ -orthogonal.

Remark 3.8. By [6, Lemma 12.5], φ either vanishes identically on Mτ , or never van-
ishes there. In the former case, g is reducible to a local product of Kähler metrics
near any point (see [6, Corollary 13.2] and [7, Remark 16.4]). In the latter case, we
call g a nontrivial SKR metric.

Remark 3.9. For a nontrivial SKR metric, consider c = τ − Q/(2φ), with Q =
g(∇τ,∇τ), and κ = sgn(φ)(∆τ + λQ/φ), regarded as functions Mτ → R. By [6,
Lemma 12.5], c is constant on Mτ , and will be called the SKR constant. In any
complex dimension m ≥ 2, we will call a nontrivial SKR metric standard if κ is
constant (and also use “standard SKR pair” as a designation for (g, τ)). According
to [6, §27, using (10.1) and Lemma 11.1], κ is in fact constant if m > 2, so that the
designation “standard” involves an extra assumption as compared with “nontrivial”
only when m = 2. The geometric meaning of κ will be recalled in §5.1.

Remark 3.10. Using Proposition 3.5, for any SKR metric, we see that (2.4) holds
at points of Mτ for which φ 6= ψ. On this subset, we regard (2.4) as an equality of
operators, and equate eigenvalues to obtain αφ+ λ = γ = αψ + µ, so that

(3.2) λ− µ = (ψ − φ)α.

According to [6, Lemma 11.1a], Q, ∆τ , φ, ψ and µ are locally C∞ functions of τ
on Mτ . If g is a standard SKR metric, λ is also such a function, as one concludes
from the equation defining κ. Hence, by (3.2), the same holds for α on its domain of
definition.

4. Associated differential equations

4.1. The SKR differential equation. A number of ordinary differential equations
are associated with nontrivial SKR metrics. Special cases of these were given in [6].
They are derived below from the Ricci-Hessian equation (2.4), i.e.

α∇dτ + r = γ g.
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In the next proposition, α will be as in (2.4), φ as in (3.1), c and κ as in Remark
3.9 and a prime denotes the derivative operator d/dτ .

Proposition 4.1. Let (g, τ) be an SKR pair with g nontrivial, on a manifold M of
complex dimension m. Then, the equation

(4.1) (τ − c)2φ′′ + (τ − c)[m− (τ − c)α]φ′ − mφ = −sgn(φ)κ/2.

holds at points of Mτ for which φ′(τ) is nonzero. If g is standard, (4.1) is an ordinary
differential equation, which, upon differentiation and division by τ − c, takes the
homogeneous form

(4.2) (τ − c)φ′′′ = [(τ − c)α−m− 2]φ′′ + [(τ − c)α′ + 2α]φ′.

A special case of equation (4.2) was important in [8], but is given here mainly for
the sake of completeness. We will only be using equation (4.1).

Proof. By Remark 3.10, on Mτ , each of Q, φ, ψ, ∆τ and µ is locally a function of τ .
In fact, we have

(4.3)
a) ψ = φ + (τ − c)φ′, b) ψ′ = 2φ′ + (τ − c)φ′′,
c) ∆τ = 2mφ + 2(τ − c)φ′, d) µ = −(m+ 1)φ′ − (τ − c)φ′′.

Namely, [6, Lemma 11.1(b)] gives 2ψ = Q′, which yields (4.3.a) (and hence (4.3.b)),
since Q = 2(τ − c)φ due to the definition of c. Next, (4.3.c) is immediate from
(4.3.a), as ∆τ = trg∇dτ = 2ψ + 2(m − 1)φ. Finally, 2µ = −(∆τ)′ by [6, Lemma
11.1(b)], and so, differentiating (4.3.c), we obtain (4.3.d).

Next, by Remark 3.10, equation (2.4) holds at points of Mτ for which φ 6= ψ. Since,
in view of (4.3.a), the latter inequality holds when (τ − c)φ′ 6= 0, and τ 6= c on Mτ

(as Q = 2(τ − c)φ and Q > 0 on Mτ ), we see that this set consists exactly of the
points of Mτ for which φ′(τ) is nonzero.

As on this subset of Mτ , (2.4) holds, so does (3.2), which along with Q = 2(τ − c)φ
and the definitions of κ and c easily yields sgn(φ)κ/2 = ∆τ/2 + (τ − c)λ = ∆τ/2 +
(τ−c)[µ+(ψ−φ)α]. Replacing µ, ψ and ∆τ with the expressions provided by (4.3),
we get (4.1). If g is standard, κ is constant, so α is a function of τ by Remark 3.10.
Hence equation (4.1) is an ordinary differential equation, and (4.2) then follows as
described in the body of the proposition. �

Remark 4.2. A converse statement to this result can be made, where (4.1) implies
(2.4) for a standard SKR metric, under the following extra assumptions.

Let φ be globally a function of τ , in the sense that it is the composite of τ with
some C∞ function I ′ → R on the image interval I ′ = τ(Mτ ). (That I ′ is indeed an
interval is known, see [7, §10 and §11].) Assuming φ′, as a function of τ , is nonzero at
all points of a dense subset of I ′, and (4.1) holds on I ′ for a C∞ function α : I ′ → R,
we obtain that (2.4) is satisfied on Mτ by α = α(τ) and some γ.

In fact, the assumption involving φ′ means, as we have seen in the proof above,
that (2.4) holds on a dense subset of Mτ , with some α that must coincide with the
one above: they both satisfy (4.1) with the same φ on a dense subset of I ′, and
hence everywhere in I ′.
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4.2. The differential equations in relation to Ricci solitons. Let (g, τ) be a
standard SKR pair on a manifold M of complex dimension m. Suppose g/τ 2 is a
Ricci soliton with soliton function bτ−1, where b is a constant. By Proposition 2.4,
equation (2.4) holds on Mrτ−1(0), with

(4.4) α = (2(m− 1) τ − b)/τ 2.
Hence, in this case, the differential equations appearing in Proposition 4.1 take the
form
(4.5)
τ 2(τ − c)2φ′′ + (τ − c)

[
mτ 2 − (τ − c)(2(m− 1)τ − b)

]
φ′ −mτ 2φ = −sgn (φ)κ τ 2/2

and

τ 3(τ − c)φ′′′ = [(m− 4)τ 3 − (2(m− 1)c+ b)τ 2 + bcτ ]φ′′ + [2(m− 1)τ(τ + c)− 2bc]φ′.

These equations hold for τ values corresponding to points of Mτ on which φ′(τ) is
nonzero.

Another ordinary differential equation is obtained on the same set as follows. The
term γ in (2.4) is given, by Remark 3.10, as γ = αψ+µ, and we substitute for ψ and
µ their respective expressions (4.3.a) and (4.3.d), to obtain

γ = αφ+ (α(τ − c)− (m+ 1))φ′ − (τ − c)φ′′.
In the case at hand, γ also has an expression derived from the last term of (2.7), in
which we replace Q by 2(τ − c)φ, and ∆τ by (4.3.c). Equating the two expressions,
and replacing α by (4.4), we get after rearranging terms and multiplying by τ that

−τ 3(τ − c)φ′′ + [(2mτ − b)τ(τ − c)− τ 3(m+ 1)]φ′

+ [2(2m− 1)τ 2 − bτ + 2(τ − c)(b− (2m− 1)τ)]φ = eτ.(4.6)

The fact shown below, that (4.6) is not, in general, a consequence of (4.5), is the
main local difference between the case where the SKR metric is conformal to a non-
Einstein Ricci soliton of the type we are considering, with b 6= 0, and the one where
it is conformal to an Einstein metric (b = 0). The latter was the object of study of
[6, 7, 8].

4.3. Solutions of the system (4.5)–(4.6). To examine the solutions of the system
(4.5)–(4.6), we note the following

Lemma 4.3. Let {φ′ + pφ = q, Aφ′′ + Bφ′ + Cφ = D} be a system of ordinary
differential equations in the variable τ , with coefficients p, q, A, B, C and D that are
rational functions. Then, on any nonempty interval admitting a solution φ, either

(4.7) A(p2 − p′)−Bp+ C = 0

holds identically, or

(4.8) φ = (D − A(q′ − pq)−Bq) /
(
A(p2 − p′)−Bp+ C

)
.

holds away from the (isolated) singularities of the right hand side.

Proof. Let φ be a solution on an interval as above. We have φ′ = q − pφ, so that
φ′′ = q′ − p′φ− pφ′ = q′ − p′φ− p(q− pφ) = (p2 − p′)φ+ q′ − pq. Substituting this in
the second equation, while collecting terms involving φ, gives(

A(p2 − p′)−Bp+ C
)
φ+ A(q′ − pq) +Bq = D,
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from which the result follows at once. �

To apply this lemma to (4.5)–(4.6), we multiply (4.6) by (τ − c)/τ and add it to
(4.5), getting a first order equation which, after multiplying by τ , simplifies to

τ 2(τ − c)(τ − 2c)φ′ +
[
−mτ 3 + (2(2m− 1)c+ b)τ 2 − (2(2m− 1)c2 + 3bc)τ + 2bc2

]
φ

= −sgn(φ)κτ 3/2 + eτ(τ − c).(4.9)

We will be applying Lemma 4.3 to the system formed by (4.9) and (4.5) (modifying
(4.9) appropriately). This system has a solution set identical to that of (4.5)–(4.6)
(certainly on intervals not containing 0, c and 2c, and by a continuity argument, on
any interval). To compute (4.7) in this case, note that p, given as a ratio of the
coefficient of φ to that of φ′ in (4.9), has a partial fraction decomposition of the form
p = m/(τ − c)− 1/(τ − 2c) + b/τ 2− (2m− 1)/τ . Similarly, q = sgn(φ)κ/(2(τ − c)) +
(e − 2sgn(φ)κc)/(2c(τ − 2c)) − e/(2τc). Using A = τ 2(τ − c)2, B = (τ − c)[mτ 2 −
(τ − c)(2(m − 1)τ − b)], C = −mτ 2 and D = −sgn(φ)kτ 2/2, two long but direct
computations gives

(4.10)
D − A(q′ − pq)−Bq = 0,
A(p2 − p′)−Bp+ C = −2bc(τ − c)2/(τ(τ − 2c)).

This immediately gives

Proposition 4.4. Suppose bc 6= 0. Then the system (4.5)–(4.6) has no nonzero
solutions on any nonempty open interval.

Proof. Assume bc 6= 0. Then neither side of the second of equations (4.10) vanishes
identically on the given interval. Hence Lemma 4.3 implies that any solution is the
ratio of the left-hand sides of two equations in (4.10), away from the point c. This
ratio is the zero function. By continuity, neither the system formed by (4.9) and (4.5),
nor the system (4.5)–(4.6), admits any nonzero solutions on the given interval. �

4.4. Solutions for the case c = 0. If c = 0, equations (4.5)–(4.6) take the form,

(4.11)
τ 4φ′′ + [(2−m)τ 3 + bτ 2]φ′ − mτ 2φ = −sgn (φ)κ τ 2/2,
−τ 4φ′′ + [((m− 1)τ 3 − bτ 2]φ′ + bτφ = eτ,

with m a positive integer, and b 6= 0. As special solutions, one can take sgn(κ)κ/(2m)
for the first, and e/b for the second. A basis of solutions to each associated homoge-
neous equation is given by {τm exp(b/τ),

∑
bm−lτ l/(m − l)!}, where the sum ranges

over l = 0 . . .m− 1 for the first, and l = 1 . . .m− 1 for the second. Thus, the general
solution to the system has the form

(4.12) φ = A+B

m−1∑
l=1

bm−l

(m− l)!
τ l + Cτm exp( b/τ)

for arbitrary constants A, B and C (where A represents the sum of an arbitrary
multiple of bm/m! with sgn(κ)κ/(2m) + e/b).
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5. Geometry and duality for SKR metrics

5.1. Local geometry of SKR metrics. We recall here the main case in the geo-
metric classification of SKR metrics. Let π : (L, 〈·, ·〉)→ (N, h) be a Hermitian holo-
morphic line bundle over a Kähler-Einstein manifold of complex dimension m − 1.
Assume that the curvature of 〈·, ·〉 is a multiple of the Kähler form of h. Note that,
if N is compact and h is not Ricci flat, this implies that L is smoothly isomorphic to
a rational power of the anti-canonical bundle of N .

Consider, on LrN (the total space of L excluding the zero section), the metric g
given by

(5.1) g|H = 2|τ − c|π∗h, g|V =
Q(τ)

(ar)2
Re 〈·, ·〉,

where
– V ,H are the vertical/horizontal distributions of L, respectively, the latter deter-
mined via the Chern connection of 〈·, ·〉,
– c, a 6= 0 are constants,
– r is the norm induced by 〈·, ·〉,
– τ is a function on LrN , obtained by composing with r another function, denoted
via abuse of notation by τ(r), and obtained as follows: one fixes an open interval I and
a positive C∞ function Q(τ) on I, solves the differential equation (a/Q) dτ = d(log r)
to obtain a diffeomorphism r(τ) : I → (0,∞), and defines τ(r) as the inverse of this
diffeomorphism.

The pair (g, τ), with τ = τ(r), is an SKR pair (see [6, §8 and §16], as well as [7,
§4]), and |∇τ |2g = Q(τ(r)). If g is nontrivial, the connection on L will not be flat.
The constant κ of Remark 3.9 is the Einstein constant of h, so that if g is nontrivial,
it is in fact standard (for an arbitrary SKR metric, h need not be Einstein if m = 2).
For g standard, or merely nontrivial, the SKR constant c (see again Remark 3.9)
coincides with c of (5.1).

Conversely, for any standard nontrivial SKR metric (M,J, g, τ), any point in
Mτ has a neighborhood biholomorphically isometric to an open set in some triple
(LrN, g, τ(r)) as above (this is a special case of [6, Theorem 18.1]). This biholomor-
phic isometry identifies span (∇τ, J∇τ) and its orthogonal complement, with V and,
respectively, H. Moreover, one can extend (some) (g, τ(r)) to all of L, and then such
a biholomorphic isometry can also be defined on neighborhoods of points in MrMτ

[7, Remark 16.4].

5.2. Duality for SKR metrics. By Proposition 3.5, an SKR pair (g, τ) satisfies a
Ricci-Hessian equation (2.4) at points of the noncritical set Mτ in which ∇dτ is not a
multiple of g. On this set (with τ−1(0) excluded), the involution of §2.2 yields a new
pair (ĝ, τ̂), which also satisfies a Ricci-Hessian equation. In general, not much can be
said about ĝ. However, a special case of the affine change mentioned in Remark 2.3
involves changing τ by an additive constant. This produces a new Killing potential t,
with (g, t) an SKR pair very closely related to (g, τ). If the additive constant is chosen
to be minus the SKR constant c, applying the involution to (g, t) yields metrics which
are Kähler with respect to an oppositely oriented complex structure. In fact, they
are even SKR metrics. We provide a proof of this in the following proposition, for
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the sake of completeness. Similar less detailed statements appear in [8, Remark 28.4]
and [1, end of §5.5 and §5.6].

Proposition 5.1. Let g be a standard SKR metric on (M,J), with Killing potential
τ and corresponding SKR constant c. If t = τ − c, then the associated pair (ĝ, t̂) =
(g/t2, 1/t) is a standard SKR pair on Mrτ−1(c).

In fact, the proof will imply that the metric ĝ is Kähler with respect to the complex
structure J̄ given by J̄ |H = J |H, J̄ |V = −J |V , where H is the orthogonal complement
of V = span (∇τ, J∇τ). This structure, defined on Mτ , extends uniquely to M (see [7,
Remark 16.4]), and the corresponding extension of ĝ (see end of §5.1) to Mrτ−1(0)
is still Kähler with respect to it.

Proof. By the classification of SKR metrics, it is enough to consider M as a subset
of the model line bundle L of §5.1. For simplicity, we take M = LrN . On L, the
complex structure J̄ defines the complex conjugate bundle structure, which we denote
L̄. We will show that the metric ĝ is an SKR metric, by constructing it explicitly as in
§5.1, but on the line bundle L̄. This line bundle is smoothly isomorphic to the dual
bundle L∗, and hence the construction will transfer to a holomorphic line bundle,
which is one of the requirements for the data used in §5.1. The proof that such
structures are Kähler is indicated in [6, §16] (or, quite efficiently, via the methods in
[1]).

The metric ĝ is obtained from the model metric g as follows: first replace 〈·, ·〉,
a, τ and I, respectively, with the complex conjugate fiber metric 〈·, ·〉, the constant

â = −a, the function t̂ = 1/(τ − c) and the open interval Î which is the image of the

decreasing diffeomorphism I 3 τ → t̂ ∈ Î. We then replace c by ĉ = 0, and have

Q replaced with a function Q̂ which is a solution to the equation a Q̂/Q = â dt̂/dτ .
Finally, using these new data, along with h, r and H, one defines a new standard

SKR metric exactly as in (5.1). Note that the definition of Q̂ guarantees that the

required relation (â/Q̂) d t̂ = d(log r) holds, and positivity of Q̂ follows from its
defining equation together with the fact that t̂(τ) is decreasing. To conclude that this
standard SKR metric is indeed ĝ = g/(τ − c)2, one computes its two factors to be

2|t̂−ĉ| = 2/|τ−c| and Q̂(t̂)/(â r)2 = −[Q(τ)/(a r)2] dt̂/dτ = Q(τ)/[(a r)2(τ−c)2]. �

Remark 5.2. In the case c = ĉ, i.e. c = 0 we have t = 1/τ , so that (ĝ, t) = (ĝ, τ̂).

Then, by Remark 3.9, one has Q = 2τφ, and similarly for Q̂. Hence φ̂/φ = τQ̂/(tQ) =

−(τ/t) dt/dτ = −(τ/(1/τ)) · (−1/τ 2) = 1, i.e. φ̂(t) = φ(τ). The same conclusion can
be reached without the use of the geometric description of SKR metrics in §5.1, by
restricting (2.2) to H and using (3.1) and Remark 3.9.

Remark 5.3. Still assuming c = 0, and using all the above conventions, suppose
one fixes all the data defining g in (5.1), except for Q = 2τφ, which varies only by
changing φ(τ) in the solution space of equation (4.1). If, in these circumstances, for
each such solution, φ′ satisfies the requirement in Remark 4.2, it follows that (2.4),
and in particular, α = α(τ) does not vary for all these metrics. As they all share
the same associated equation (4.1), the corresponding dual metrics ĝ also share their
own associated equation (4.1), written with t = τ̂ and α̂, the latter determined as
in (2.5). Since the solution space determines the coefficients of a linear differential
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equation, the result φ̂(t) = φ(τ) now implies that (4.1) for (ĝ, τ̂) is obtained from
(4.1) of (g, τ) simply by the change of variable τ → τ̂ = 1/τ .

6. Proof of Theorem A

Theorem 6.1. Given a standard SKR pair (g, τ), if ĝ = g/τ 2 is a non-Einstein Ricci
soliton with soliton function a multiple of τ−1, then ĝ is Kähler, and locally of the
type given by Koiso in [10] (or Cao in [4]).

Proof. In fact, as the pair (g, τ) is standard, the associated function φ cannot be
identically zero (see Remark 3.8). As the premises are those of §4.2, as a function
on the image of τ , the function φ solves the system (4.5)–(4.6), but can do so only
if bc = 0, by Proposition 4.4 (here bτ−1 denotes, as in §4.2, the soliton function). As
ĝ is a non-Einstein Ricci soliton, b 6= 0 (Remark 2.5). Hence the SKR constant c is
zero. This implies, by Proposition 5.1 and the paragraph past it, that the soliton ĝ
is Kähler on Mrτ−1(0), with respect to a complex structure oppositely oriented to

that with respect to which g is Kähler. By Remark 5.2, φ̂(τ̂) = φ(τ), so that, by
(4.12) and the definition of c in Remark 3.9,

Q̂ = 2τ̂ φ̂ =
2

τ

[
A+B

m−1∑
l=1

bm−l

(m− l)!
1

τ l
+ C

1

τm
exp( bτ)

]
,

for some constants A,B,C. It is known (cf. [3, §2]) that a metric ĝ with the char-

acteristics given in §5.1, and such an expression for Q̂, is (locally) of the form found
by Koiso. �

We end with the

Proof of Theorem A. Let M be of dimension at least six, with (g, τ) a pair for which g
is Kähler. If the associated pair (ĝ, τ̂) is a Ricci soliton, then, by Corollary 3.7, (g, τ)
is an SKR pair. (This will also hold in dimension four if Q and ∆τ are τ -dependent,
see the paragraph before Proposition 3.3.) The non-reducibility assumption on g
implies, in these dimensions, that it is a standard SKR metric. As the metric ĝ
cannot be Einstein by Remark 2.5, Theorem 6.1 implies that ĝ is Kähler (and locally
of the type given by Koiso).

As to the alternative version of this theorem, mentioned in the Introduction, if τ is
a Killing potential and the soliton function is nonconstant, smooth and τ -dependent,
then it is in fact nonconstant and affine in τ−1, by Proposition 3.1. But then the
soliton equation also holds with a soliton function which is just a nonconstant multiple
of τ−1. The theorem then follows just as in the proof above.
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