Chapter 1: An Introduction to Computer Science

Invitation to Computer Science, Java Version, Third Edition

Objectives

In chapter 1, you will learn about

- One definition of computer science
- The concept of algorithms
- Organization of the reference book (for your information only)
Introduction

- Common misconceptions about computer science
 - Computer science is the study of computers
 - Computer science is the study of the uses and applications of computers and software
 - Computer science is the study of how to write computer programs

The Definition of Computer Science

- Gibbs and Tucker definition of computer science
 - The study of algorithms
 - Formal and mathematical properties
 - Hardware realizations
 - Linguistic realizations
 - Applications
The Definition of Computer Science (continued)

- Algorithm
 - Dictionary definition
 - Procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation
 - A step-by-step method for accomplishing a task
 - Informal description
 - An ordered sequence of instructions that is guaranteed to solve a specific problem

The Definition of Computer Science (continued)

- An algorithm is a list that looks like
 - STEP 1: Do something.
 - STEP 2: Do something.
 - STEP 3: Do something.
 - . . .
 - . . .
 - . . .
 - STEP N: Stop. You are finished.
The Definition of Computer Science (continued)

- Computer scientist designs and develops algorithms to solve problems
- Operations involved in designing algorithms
 - Formal and mathematical properties
 - Studying the behavior of algorithms to determine whether they are correct and efficient
 - Hardware realizations
 - Designing and building computer systems that are able to execute algorithms

The Definition of Computer Science (continued)

- Linguistic realizations
 - Designing programming languages and translating algorithms into these machine languages
- Applications
 - Identifying important problems and designing correct and efficient software packages to solve these problems
The Definition of Computer Science (continued)

- Categories of operations used to construct algorithms
 - Sequential operations
 - Carry out a single well-defined task; when that task is finished, the algorithm moves on to the next operation
 - Examples:
 - Add 1 cup of butter to the mixture in the bowl
 - Subtract the amount of the check from the current account balance
 - Set the value of \(x \) to 1

The Definition of Computer Science (continued)

- Conditional operations
 - Ask a question and then select the next operation to be executed on the basis of the answer to that question
 - Examples
 - If the mixture is too dry, then add one-half cup of water to the bowl
The Definition of Computer Science (continued)

- Conditional operations examples (continued):
 - If the amount of the check is less than or equal to the current account balance, then cash the check; otherwise, tell the person that the account is overdrawn.
 - If x is not equal to 0, then set y equal to 1/x; otherwise, print an error message that says we cannot divide by 0.

The Definition of Computer Science (continued)

- Iterative operations
 - Tell us to go back and repeat the execution of a previous block of instructions
 - Examples
 - Repeat the previous two operations until the mixture has thickened
 - While there are still more checks to be processed, do the following five steps
 - Repeat steps 1, 2, and 3 until the value of y is equal to 11.
The Definition of Computer Science (continued)

- If we can specify an algorithm to solve a problem
 - we can automate its solution and let a computing agent to do it

- Computing agent
 - The machine, robot, person, or thing carrying out the steps of the algorithm
 - Does not need to understand the concepts or ideas underlying the solution

The Formal Definition of an Algorithm

- Algorithm
 - A well-ordered collection of **unambiguous and effectively computable operations** that, when executed, produces a result and halts in a finite amount of time
The Formal Definition of an Algorithm (continued)

- Unambiguous, understandable operation
 - An operation that can be understood and carried out directly by the computing agent without needing to be further simplified or explained

- Effectively computable (doable)
 - Computational process exists that allows computing agent to complete that operation successfully

The result of the algorithm must be produced after the execution of a finite number of operations

- Infinite loop
 - The algorithm has no provisions to terminate
 - A common error in the design and coding of algorithms
The Importance of Algorithmic Problem Solving

- Algorithmic solutions can be
 - Encoded into some appropriate language
 - Given to a computing agent to execute

- The computing agent
 - Would mechanically follow these instructions and successfully complete the task specified
 - Would not have to understand
 - Creative processes that went into discovery of solution
 - Principles and concepts that underlie the problem

Example

Algorithm: A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time

- A valid algorithm for shampooing your hair?
 - Wet your hair
 - Lather your hair
 - Rinse your hair
 - Repeat

- No. The problems are
 - Repeat what?
 - for how many times?
Example

- Two valid algorithms for shampooing your hair
 - Algorithm 1
 - Wet your hair
 - Lather your hair
 - Rinse your hair
 - Lather your hair
 - Rinse your hair
 - Algorithm 2
 - Wet your hair
 - Repeat the following steps until your hair is clean
 - Lather your hair
 - Rinse your hair

Organization of the Text

- The reference book is divided into six separate sections called levels

- Each level addresses one aspect of the definition of computer science

- Computer science/algorithms
Summary

- Computer science is the study of algorithms
- An algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time
- If we can specify an algorithm to solve a problem, then we can automate its solution