Chapter 1: An Introduction to Computer Science

Invitation to Computer Science, Java Version, Third Edition

Objectives

In this chapter, you will learn about

- The definition of computer science
- Algorithms
- A brief history of computing
- Organization of the text
Introduction

- Common misconceptions about computer science
 - Computer science is the study of computers
 - Computer science is the study of the uses and applications of computers and software
 - Computer science is the study of how to write computer programs

The Definition of Computer Science

- Gibbs and Tucker definition of computer science
 - The study of algorithms
 - Formal and mathematical properties
 - Hardware realizations
 - Linguistic realizations
 - Applications
The Definition of Computer Science (continued)

- Computer scientist designs and develops algorithms to solve problems
- Operations involved in designing algorithms
 - Formal and mathematical properties
 - Studying the behavior of algorithms to determine whether they are correct and efficient
 - Hardware realizations
 - Designing and building computer systems that are able to execute algorithms
- Linguistic realizations
 - Designing programming languages and translating algorithms into these languages
- Applications
 - Identifying important problems and designing correct and efficient software packages to solve these problems
The Definition of Computer Science (continued)

- Algorithm
 - Dictionary definition
 - Procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation
 - A step-by-step method for accomplishing a task
 - Informal description
 - An ordered sequence of instructions that is guaranteed to solve a specific problem

The Definition of Computer Science (continued)

- An algorithm is a list that looks like
 - STEP 1: Do something.
 - STEP 2: Do something.
 - STEP 3: Do something.
 - . . .
 - . . .
 - . . .
 - STEP N: Stop. You are finished.
The Definition of Computer Science
(continued)

- Categories of operations used to construct algorithms
 - Sequential operations
 - Carry out a single well-defined task; when that task is finished, the algorithm moves on to the next operation
 - Examples:
 - Add 1 cup of butter to the mixture in the bowl
 - Subtract the amount of the check from the current account balance
 - Set the value of x to 1

- Conditional operations
 - Ask a question and then select the next operation to be executed on the basis of the answer to that question
 - Examples
 - If the mixture is too dry, then add one-half cup of water to the bowl
The Definition of Computer Science (continued)

- Conditional operations examples (continued):
 - If the amount of the check is less than or equal to the current account balance, then cash the check; otherwise, tell the person that the account is overdrawn.
 - If x is not equal to 0, then set y equal to 1/x; otherwise, print an error message that says we cannot divide by 0.

The Definition of Computer Science (continued)

- Iterative operations
 - Tell us to go back and repeat the execution of a previous block of instructions.
 - Examples
 - Repeat the previous two operations until the mixture has thickened.
 - While there are still more checks to be processed, do the following five steps.
 - Repeat steps 1, 2, and 3 until the value of y is equal to 11.
The Definition of Computer Science (continued)

- If we can specify an algorithm to solve a problem, we can automate its solution

- Computing agent
 - The machine, robot, person, or thing carrying out the steps of the algorithm
 - Does not need to understand the concepts or ideas underlying the solution

The Formal Definition of an Algorithm

- Algorithm
 - A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time

- Unambiguous operation
 - An operation that can be understood and carried out directly by the computing agent without needing to be further simplified or explained
The Formal Definition of an Algorithm (continued)

- A primitive operation (or a primitive) of the computing agent
 - Operation that is unambiguous for computing agent
 - Primitive operations of different individuals (or machines) vary
 - An algorithm must be composed entirely of primitives, which can be organized hierarchically

- Effectively computable
 - Computational process exists that allows computing agent to complete that operation successfully

The Formal Definition of an Algorithm (continued)

- The result of the algorithm must be produced after the execution of a finite number of operations
 - Infinite loop
 - The algorithm has no provisions to terminate
 - A common error in the designing of algorithms
The Importance of Algorithmic Problem Solving

- Algorithmic solutions can be
 - Encoded into some appropriate language
 - Given to a computing agent to execute

- The computing agent
 - Would mechanically follow these instructions and successfully complete the task specified
 - Would not have to understand
 - Creative processes that went into discovery of solution
 - Principles and concepts that underlie the problem

The Early Period: Up to 1940

- 3,000 years ago: Mathematics, logic, and numerical computation
 - Important contributions made by the Greeks, Egyptians, Babylonians, Indians, Chinese, and Persians

- 1614: Logarithms
 - Invented by John Napier to simplify difficult mathematical computations

- Around 1622: First slide rule created
The Early Period: Up to 1940 (continued)

■ 1672: The Pascaline
 ● Designed and built by Blaise Pascal
 ● One of the first mechanical calculators
 ● Could do addition and subtraction

■ 1674: Leibnitz’s Wheel
 ● Constructed by Gottfried Leibnitz
 ● Mechanical calculator
 ● Could do addition, subtraction, multiplication, and division

Figure 1.4
The Pascaline: One of the Earliest Mechanical Calculators
The Early Period: Up to 1940 (continued)

- **1801: The Jacquard loom**
 - Developed by Joseph Jacquard
 - Automated loom
 - Used punched cards to create desired pattern

- **1823: The Difference Engine**
 - Developed by Charles Babbage
 - Did addition, subtraction, multiplication, and division to 6 significant digits
 - Solved polynomial equations and other complex mathematical problems

Figure 1.5
Drawing of the Jacquard Loom
1830s: The Analytic Engine
- Designed by Charles Babbage
- More powerful and general-purpose computational machine
- Components were functionally similar to the four major components of today’s computers
 - Mill (modern terminology: arithmetic/logic unit)
 - Store (modern terminology: memory)
 - Operator (modern terminology: processor)
 - Output (modern terminology: input/output)

1890: U.S. census carried out with programmable card processing machines
- Built by Herman Hollerith
- These machines could automatically read, tally, and sort data entered on punched cards
The Birth of Computers:
1940-1950

- Development of electronic, general-purpose computers
 - Did not begin until after 1940
 - Was fueled in large part by needs of World War II
- Early computers
 - Mark I
 - ENIAC
 - ABC system
 - Colossus
 - Z1

Figure 1.6
Photograph of the ENIAC Computer
The Birth of Computers: 1940-1950 (continued)

- Stored program computer model
 - Proposed by John Von Neumann in 1946
 - Stored binary algorithm in the computer’s memory along with the data
 - Is known as the Von Neumann architecture
 - Modern computers remain, fundamentally, Von Neumann machines
 - First stored program computers
 - EDVAC
 - EDSAC

The Modern Era: 1950 to the Present

- First generation of computing (1950-1959)
 - Vacuum tubes used to store data and programs
 - Each computer was multiple rooms in size
 - Computers were not very reliable
The Modern Era: 1950 to the Present (continued)

- Second generation of computing (1959-1965)
 - Transistors and magnetic cores replaced vacuum tubes
 - Dramatic reduction in size
 - Computer could fit into a single room
 - Increase in reliability of computers
 - Reduced cost of computers
 - High-level programming languages
 - The programmer occupation was born

The Modern Era: 1950 to the Present (continued)

- Third generation of computing (1965-1975)
 - Integrated circuits rather than individual electronic components were used
 - Further reduction in size and cost of computers
 - Computers became desk-sized
 - First minicomputer developed
 - Software industry formed
The Modern Era: 1950 to the Present (continued)

- Fourth generation of computing (1975-1985)
 - Reduced to the size of a typewriter
 - First microcomputer developed
 - Desktop and personal computers common
 - Appearance of
 - Computer networks
 - Electronic mail
 - User-friendly systems (graphical user interfaces)
 - Embedded systems

Figure 1.7
The Altair 8800, the World’s First Microcomputer
The Modern Era: 1950 to the Present (continued)

- Fifth generation of computing (1985-?)
 - Recent developments
 - Massively parallel processors
 - Handheld devices and other types of personal digital assistants (PDAs)
 - High-resolution graphics
 - Powerful multimedia user interfaces incorporating sound, voice recognition, touch, photography, video, and television

The Modern Era: 1950 to the Present (continued)

- Recent developments (continued)
 - Integrated global telecommunications incorporating data, television, telephone, fax, the Internet, and the World Wide Web
 - Wireless data communications
 - Massive storage devices
 - Ubiquitous computing
<table>
<thead>
<tr>
<th>GENERATION</th>
<th>APPROXIMATE DATES</th>
<th>MAJOR ADVANCES</th>
</tr>
</thead>
</table>
| First | 1950–1957 | First commercial computers
First symbolic programming languages
Use of binary arithmetic, vacuum tubes for storage
Punched card input/output |
| Second | 1957–1965 | Transistors and core memories
First disks for mass storage
Size reduction, increased reliability, lower costs
First high-level programming languages
First operating systems |
| Third | 1965–1975 | Integrated circuits
Further reduction in size and cost, increased reliability
First minicomputers
Time-shared operating systems
Appearance of the software industry
First set of computing standards for compatibility between systems |

Figure 1.8

Some of the Major Advancements in Computing
Organization of the Text

- This book is divided into six separate sections called levels
- Each level addresses one aspect of the definition of computer science
- Computer science/algorithms

Organization of the Text (continued)

- Level 1: The Algorithmic Foundations of Computer Science (the only level covered in details in this course)
 - Chapters 1, 2, 3
- Level 2: The Hardware World
 - Chapters 4, 5
- Level 3: The Virtual Machine
 - Chapters 6, 7
Organization of the Text (continued)

- Level 4: The Software World
 - Chapters 8, 9, 10, 11
- Level 5: Applications
 - Chapters 12, 13, 14
- Level 6: Social Issues
 - Chapter 15

Figure 1.9
Organization of the Text into a Six-Layer Hierarchy
Summary

- Computer science is the study of algorithms
- An algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time
- If we can specify an algorithm to solve a problem, then we can automate its solution
- Computers developed from mechanical calculating devices to modern electronic marvels of miniaturization