Focus of the Course

• Object-Oriented Software Development
 ▪ problem solving
 ▪ program design, implementation, and testing
 ▪ object-oriented concepts
 ▪ classes
 ▪ objects
 ▪ encapsulation
 ▪ inheritance
 ▪ polymorphism
 ▪ graphical user interfaces
 ▪ the Java programming language
Introduction

• We first need to explore the fundamentals of computer processing

• Chapter 1 focuses on:
 • components of a computer
 • how those components interact
 • how computers store and manipulate information
 • computer networks
 • the Internet and the World Wide Web
 • programming and programming languages
 • an introduction to Java
 • an overview of object-oriented concepts

Outline

Computer Processing
Hardware Components
Networks
The Java Programming Language
Program Development
Object-Oriented Programming
Hardware and Software

- **Hardware**
 - the physical, tangible parts of a computer
 - keyboard, monitor, disks, wires, chips, etc.

- **Software**
 - programs and data
 - a *program* is a series of instructions

- A computer requires both hardware and software
- Each is essentially useless without the other

CPU and Main Memory

- **Central Processing Unit**
 - Chip that executes program commands
 - Intel Pentium 4
 - Sun ultraSPARC III

- **Main Memory**
 - Primary storage area for programs and data that are in active use
 - Synonymous with RAM
Secondary Memory Devices

Secondary memory devices provide long-term storage. Information is moved between main memory and secondary memory as needed.

- Hard disks
- Floppy disks
- ZIP disks
- Writable CDs
- Writable DVDs
- Tapes

Input / Output Devices

I/O devices facilitate user interaction.

- Monitor
- Keyboard
- Monitor screen
- Keyboard
- Mouse
- Joystick
- Bar code scanner
- Touch screen
Analog vs. Digital

- There are two basic ways to store and manage data:
 - **Analog**
 - continuous, in direct proportion to the data represented
 - music on a record album - a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker
 - **Digital**
 - the information is broken down into pieces, and each piece is represented separately
 - music on a compact disc - the disc stores numbers representing specific voltage levels sampled at specific times

Digital Information

- Computers store all information digitally:
 - numbers
 - text
 - graphics and images
 - video
 - audio
 - program instructions

- In some way, all information is *digitized* - broken down into pieces and represented as numbers
Representing Text Digitally

- For example, every character is stored as a number, including spaces, digits, and punctuation
- Corresponding upper and lower case letters are separate characters

HI, Heather.

72 105 44 32 72 101 97 116 104 101 114 46

Binary Numbers

- Once information is digitized, it is represented and stored in memory using the binary number system
- A single binary digit (0 or 1) is called a bit
- Devices that store and move information are cheaper and more reliable if they have to represent only two states
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0)
- Permutations of bits are used to store values
Bit Permutations

Each additional bit doubles the number of possible permutations.

<table>
<thead>
<tr>
<th>1 bit</th>
<th>2 bits</th>
<th>3 bits</th>
<th>4 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>001</td>
<td>0001</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>11</td>
<td>011</td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>100</td>
<td>0100</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>101</td>
<td>0101</td>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>110</td>
<td>0110</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>111</td>
<td>0111</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>

Each permutation can represent a particular item.

- There are 2^N permutations of N bits.
- Therefore, N bits are needed to represent 2^N unique items.

How many items can be represented by N bits?

- 1 bit: $2^1 = 2$ items
- 2 bits: $2^2 = 4$ items
- 3 bits: $2^3 = 8$ items
- 4 bits: $2^4 = 16$ items
- 5 bits: $2^5 = 32$ items
A Computer Specification

- Consider the following specification for a personal computer:
 - 2.8 GHz Pentium 4 Processor
 - 512 MB RAM
 - 80 GB Hard Disk
 - 48x CD-RW / DVD-ROM Combo Drive
 - 17” Video Display with 1280 x 1024 resolution
 - 56 Kb/s Modem

- What does it all mean?
Main memory is divided into many memory locations (or cells).

Each memory cell has a numeric address, which uniquely identifies it.

Each memory cell stores a set number of bits (usually 8 bits, or one byte).

Large values are stored in consecutive memory locations.
Every memory device has a storage capacity, indicating the number of bytes it can hold.

Capacities are expressed in various units:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Number of Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilobyte</td>
<td>KB</td>
<td>$2^{10} = 1024$</td>
</tr>
<tr>
<td>megabyte</td>
<td>MB</td>
<td>2^{20} (over 1 million)</td>
</tr>
<tr>
<td>gigabyte</td>
<td>GB</td>
<td>2^{30} (over 1 billion)</td>
</tr>
<tr>
<td>terabyte</td>
<td>TB</td>
<td>2^{40} (over 1 trillion)</td>
</tr>
</tbody>
</table>

A CPU is on a chip called a microprocessor.

It continuously follows the fetch-decode-execute cycle:

- **fetch**: Retrieve an instruction from main memory
- **decode**: Determine what the instruction is
- **execute**: Carry out the instruction

© 2007 Pearson Addison-Wesley. All rights reserved
The Central Processing Unit

- The CPU contains:
 - Arithmetic / Logic Unit: Performs calculations and makes decisions
 - Control Unit: Coordinates processing steps
 - Registers: Small storage areas

Outline

- Computer Processing
- Hardware Components
- Networks
- The Java Programming Language
- Program Development
- Object-Oriented Programming
Networks

- A network is two or more computers that are connected so that data and resources can be shared
- Most computers are connected to some kind of network
- Each computer has its own network address, which uniquely identifies it among the others
- A file server is a network computer dedicated to storing programs and data that are shared among network users

The World Wide Web

- The World Wide Web allows many different types of information to be accessed using a common interface
- A browser is a program which accesses and presents information
 - text, graphics, video, sound, audio, executable programs
- A Web document usually contains links to other Web documents, creating a hypermedia environment
- The term Web comes from the fact that information is not organized in a linear fashion
The World Wide Web

- Web documents are often defined using the *HyperText Markup Language* (HTML)

- Information on the Web is found using a *Uniform Resource Locator* (URL):
 - http://www.lycos.com
 - http://www.villanova.edu/webinfo/domains.html
 - ftp://java.sun.com/applets/animation.zip

- A URL indicates a protocol (http), a domain, and possibly specific documents

Outline

- Computer Processing
- Hardware Components
- Networks
- The Java Programming Language
- Program Development
- Object-Oriented Programming
Software Categories

- **Operating System**
 - controls all machine activities
 - provides the user interface to the computer
 - manages resources such as the CPU and memory
 - Windows XP, Unix, Linux, Mac OS

- **Application program**
 - generic term for any other kind of software
 - word processors, missile control systems, games

- **Most operating systems and application programs have a graphical user interface (GUI)**

Java

- A *programming language* specifies the **words and symbols** that we can use to write a program

- A programming language employs a set of **rules** that dictate how the words and symbols can be put together to form valid *program statements*

- The Java programming language was created by Sun Microsystems, Inc.

- It was introduced in 1995 and it’s popularity has grown quickly since
Java Program Structure

• In the Java programming language:
 ▪ A program is made up of one or more classes
 ▪ A class contains one or more methods
 ▪ A method contains program statements

• These terms will be explored in detail throughout the course

• A Java application always contains a method called main

• See Lincoln.java (page 27)

Lincoln.java

//**
// Lincoln.java Author: Lewis/Loftus
//
// Demonstrates the basic structure of a Java application.
//**

public class Lincoln
{
 // Prints a presidential quote.
 public static void main (String[] args)
 {
 System.out.println ("A quote by Abraham Lincoln:");

 System.out.println ("Whatever you are, be a good one.");
 }
}
Java Program Structure

// comments about the class
public class MyProgram {
 // comments about the class
 public static void main (String[] args) {
 // comments about the method
 }
 }
}

Comments can be placed almost anywhere

method header

class header

class body

method body
Comments

- Comments in a program are called *inline documentation*
- They should be included to explain the purpose of the program and describe processing steps
- They do not affect how a program works
- Java comments can take three forms:
 - `//` this comment runs to the end of the line
 - `/*` this comment runs to the terminating symbol, even across line breaks `*/`
 - `/**` this is a *javadoc* comment `*/`

Identifiers

- *Identifiers* are the words a programmer uses in a program
- An identifier can be made up of letters, digits, the underscore character (_), and the dollar sign
- Identifiers cannot begin with a digit
- Java is *case sensitive* - Total, total, and TOTAL are different identifiers
- By convention, programmers use different case styles for different types of identifiers, such as
 - *title case* for class names - Lincoln
 - *upper case* for constants - MAXIMUM
Identifiers

- Sometimes we choose identifiers ourselves when writing a program (such as Lincoln)
- Sometimes we are using another programmer’s code, so we use the identifiers that he or she chose (such as println)
- Often we use special identifiers called reserved words that already have a predefined meaning in the language
- A reserved word cannot be used in any other way

Reserved Words

- The Java reserved words:
 - abstract
 - else
 - interface
 - switch
 - assert
 - enum
 - long
 - synchronized
 - boolean
 - extends
 - native
 - this
 - break
 - false
 - new
 - throw
 - byte
 - final
 - null
 - throws
 - case
 - finally
 - package
 - transient
 - catch
 - float
 - private
 - true
 - char
 - for
 - protected
 - try
 - class
 - goto
 - public
 - void
 - const
 - if
 - return
 - volatile
 - continue
 - implements
 - short
 - while
 - default
 - import
 - static
 - do
 - instanceof
 - strictfp
 - double
 - int
 - super
White Space

- Spaces, blank lines, and tabs are called *white space*
- White space is used to separate words and symbols in a program
- Extra white space is ignored
- A valid Java program can be formatted many ways
- Programs should be formatted to enhance readability, using consistent indentation
- See [Lincoln2.java](page 33)
- See [Lincoln3.java](page 34)

Lincoln2.java

```
//****************************************************************************
//  Lincoln2.java       Author: Lewis/Loftus
//
//  Demonstrates a poorly formatted, though valid, program.
//****************************************************************************

public class Lincoln2{public static void main(String[]args){
   System.out.println("A quote by Abraham Lincoln:");
   System.out.println("Whatever you are, be a good one.");}}
```
public class Lincoln3 {
 public static void main(String[] args) {
 System.out.println("A quote by Abraham Lincoln:" + "Whatever you are, be a good one.");
 }
}

Outline

Computer Processing
 Hardware Components
Networks
 The Java Programming Language
Program Development
 Object-Oriented Programming
Program Development

- The mechanics of developing a program include several activities
 - writing the program in a specific programming language (such as Java)
 - translating the program into a form that the computer can execute
 - investigating and fixing various types of errors that can occur
- Software tools can be used to help with all parts of this process

Language Levels

- There are four programming language levels:
 - machine language
 - assembly language
 - high-level language
 - fourth-generation language
- Each type of CPU has its own specific *machine language*
- The other levels were created to make it easier for a human being to read and write programs
Programming Languages

• Each type of CPU executes only a particular machine language
• A program must be translated into machine language before it can be executed
• A compiler is a software tool which translates source code into a specific target language
• Often, that target language is the machine language for a particular CPU type
• The Java approach is somewhat different

Java Translation

• The Java compiler translates Java source code into a special representation called bytecode
• Java bytecode is not the machine language for any traditional CPU
• Another software tool, called an interpreter, translates bytecode into machine language and executes it
• Therefore the Java compiler is not tied to any particular machine
• Java is considered to be architecture-neutral
Development Environments

- There are many programs that support the development of Java software, including:
 - Sun Java Development Kit (JDK)
 - Sun NetBeans
 - IBM Eclipse
 - Borland JBuilder
 - MetroWerks CodeWarrior
 - BlueJ
 - jGRASP

- Though the details of these environments differ, the basic compilation and execution process is essentially the same
Syntax and Semantics

- The **syntax rules** of a language define how we can put together symbols, reserved words, and identifiers to make a valid program.

- The **semantics** of a program statement define what that statement means (its purpose or role in a program).

- A program that is syntactically correct is not necessarily logically (semantically) correct.

- A program will always do what we tell it to do, not what we meant to tell it to do.

Errors

- A program can have three types of errors.

- The compiler will find syntax errors and other basic problems (**compile-time errors**).
 - If compile-time errors exist, an executable version of the program is not created.

- A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (**run-time errors**).

- A program may run, but produce incorrect results, perhaps using an incorrect formula (**logical errors**).
Basic Program Development

Edit and save program → Compile program → Execute program and evaluate results

Outline

Computer Processing
Hardware Components
Networks
The Java Programming Language
Program Development
Object-Oriented Programming
Problem Solving

• The purpose of writing a program is to solve a problem

• Solving a problem consists of multiple activities:
 ▪ Understand the problem
 ▪ Design a solution (an algorithm)
 ▪ Consider alternatives and refine the solution
 ▪ Implement the solution
 ▪ Test the solution

• These activities are not purely linear – they overlap and interact

Problem Solving

• The key to designing a solution is breaking it down into manageable pieces

• When writing software, we design separate pieces that are responsible for certain parts of the solution

• An object-oriented approach lends itself to this kind of solution decomposition

• We will dissect our solutions into pieces called objects and classes
Object-Oriented Programming

- Java is an object-oriented programming language
- As the term implies, an object is a fundamental entity in a Java program
- Objects can be used effectively to represent real-world entities
- For instance, an object might represent a particular employee in a company
- Each employee object handles the processing and data management related to that employee

Objects

- An object has:
 - *state* (data) - descriptive characteristics
 - *behaviors* (methods) - what it can do (or what can be done to it)
- The state of a bank account includes its account number and its current balance
- The behaviors associated with a bank account include the ability to make deposits and withdrawals
- Note that the behavior of an object might change its state
Classes

- An object is defined by a *class*
- A class is the blueprint of an object
- The class uses methods to define the behaviors of the object
- The class that contains the main method of a Java program represents the entire program
- A class represents a concept, and an object represents the embodiment of that concept
- Multiple objects can be created from the same class

Objects and Classes

A class (the concept) An object (the realization)

- Bank Account
- John’s Bank Account: Balance: $5,257
- Bill’s Bank Account: Balance: $1,245,069
- Mary’s Bank Account: Balance: $16,833

Multiple objects from the same class
Inheritance

• One class can be used to derive another via inheritance
• Classes can be organized into hierarchies

Summary

• Chapter 1 focused on:
 ▪ components of a computer
 ▪ how those components interact
 ▪ how computers store and manipulate information
 ▪ computer networks
 ▪ the Internet and the World Wide Web
 ▪ programming and programming languages
 ▪ an introduction to Java
 ▪ an overview of object-oriented concepts