Balanced Search Trees

CS 121: Data Structures

A 1 g Oor 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs

» B-trees

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Symbol table review

guarantee average case

key

implementation __ .
: : : interface
search insert delete search hit insert delete
N N N N N N

sequential search
(unordered list)

145 14 equals()

binary search

(ordered array) lg N N N lg N b N N v compareTo()
e NN x s as s 0
irear proding N N 3-5 3-5 3-5 ety
BST N N N 1391gN 1391gN VN v compareTo()

goal logN logN logN log N log N log N v compareTo()

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

2-3 tree

Allow 1 or 2 keys per node.
« 2-node: one key, two children.
« 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

@ how to maintain?

3-node 2-node
smaller than E E J e
\ larger than J

O OIOINOING)
AN

between E and | null link

2-3 tree demo

Search.
« Compare search key against keys in node.
e Find interval containing search key.
« Follow associated link (recursively).

search for H

O
E) (R)

OENOIOINOING)

Insertion intfo a 2-3 tree

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.

insert G

Insertion intfo a 2-3 tree

Insertion into a 3-node at bottom.

« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
« Repeat up the tree, as necessary.

« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

/@\
b cd

less between\ /between\ /between\ /between greater
than a aandb b and c c and d dand e than e
da C e

(b) (d)

less between\ /between\ /between\ /between greater
than a aandb b and c c and d dand e than e

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

root parent is a 3-node

— R ef

parent is a 2-node

eft @ . D middle_fa e .
right (@)
T

10

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
e Worst case:
e Best case:

11

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
 Worst case: IgN. [all 2-nodes]
« Best case: logs N =.6311gN. [all 3-nodes]
« Between 12 and 20 for a million nodes.
« Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

12

ST implementations: summary

guarantee average case
imol tati __ ordered key
'mplementation ops? interface
search insert delete search hit insert delete
sequential se?rch N N N N N N Tl
(unordered list)
binary search
lg N N N lg N 2 N N v compareTo()
(ordered array)
separate chaining equals()
hash table N N N 3-5 3-5 3-5 hashCode ()
linear probing equals()
hash table N N N 3-5 3-5 3-5 hashCode ()
BST N N N 1391gN 1391gN VN v compareTo()
2-3 tree clgN clgN clgN clgN clgN clgN v compareTo()

I

constant c depend upon implementation

2-3 tree: implementation?

Direct implementation is complicated, because:
« Maintaining multiple node types is cumbersome.
« Need multiple compares to move down tree.
« Need to move back up the tree to split 4-nodes.
o Large number of cases for splitting.

fantasy code

public void put(Key key, Value val)
{
Node x = root;
while (x.getTheCorrectChild(key) != null)
{
X = X.getTheCorrectChildKey();
if (x.1s4Node()) x.split(Q);
}
if (x.1s2Node()) x.make3Node(key, val);
else if (x.is3Node()) x.make4Node(key, val);

Bottom line. Could do it, but there's a better way.

14

3.3 BALANCED SEARCH TREES

» red-black BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1: regular BST.
« No way to tell a 3-node from a 2-node.
e Cannot map from BST back to 2-3 tree.

Approach 2: regular BST with "glue” nodes.
« Wastes space, wasted link.
« Code probably messy.

Approach 3: regular BST with red "glue” links.
« Widely used in practice.
o Arbitrary restriction: red links lean left.

|

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use "internal” left-leaning links as "glue"” for 3-nodes.

3-node @ «—
©

less between greater
than a aandb than b greater
than b

less between
than a aandb

red links "glue”
nodes within a 3-node

larger key is root

black links connect
2-nodes and 3-nodes

2-3 tree corresponding red-black BST

17

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red—black tree

2-3 tree

18

An equivalent definition

A BST such that:
e No node has two red links connected to it.

o Every path from root to null link has the same number of black links.
« Red links lean left. \

"perfect black balance"

19

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster
because of better balance

public Val get(Key key)

{
Node X = root;
while (x !'= null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

20

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

cah encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
{

Key key;

Value val;

Node left, right;

boolean color; // color of parent 1link
}

private boolean 1sRed(Node x)

{

if (x == null) return false;

return x.color == RED;
}

null links are black

h.left.color
is RED

©
(A) (D)

V'

(E)

h

(G)

h.right.color

.~ is BLACK

21

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:
« Symmetric order.
e Perfect black balance.
[but not necessarily color invariants]

right-leaning two red children left-left red left-right red
red link (a temporary 4-node) (a temporary 4-node) (a temporary 4-node)

How? Apply elementary red-black BST operations: rotation and color flip.

22

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(before) private Node rotateLeft(Node h)
{
" assert isRed(h.right);
Node x = h.right;
X h.right = x.left;
less X.left = h;
than E x.color = h.color;
h.color = RED;
between greater return X;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

23

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

GIRE private Node rotatelLeft(Node h)
{
X assert isRed(h.right);
Node x = h.right;
h h.right = x.left;
greater x.left = h;
than S x.color = h.color;
h.color = RED;
less between SEEIr
than E EandS ¥

Invariants. Maintains symmetric order and perfect black balance.

24

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

{281 private Node rotateRight(Node h)
{
4 assert isRed(h.left);
Node x = h.left;
X h.left = x.right;
greater X.right = h;
than S x.color = h.color;
h.color = RED;
less between SEEIr
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(after) private Node rotateRight(Node h)
{
x assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
less X.right = h;
than E x.color = h.color;
h.color = RED;
between greater return X;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

26

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors(Node
{
assert !isRed(h);
assert isRed(h.left);
assert i1sRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

h)

27

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node
{
assert !isRed(h);
assert isRed(h.left);
assert i1sRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

h)

28

Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

left root rlght

o o root
search ends
“~at this null link
™~ search ends
: : attached new node
at this null link e it red link
L root

@ red link to
new node
e ™ containing a
converts 2-node
to 3-node

root
o

rotated left

a ™\ to make a
legal 3-node

29

Insertion in a LLRB tree

Case 1. Insert into a 2-node at the bottom.

to maintain symmetric order

o Do standard BST insert; color new link red. «<—— and perfect black balance

o If new red link is a right link, rotate left.

insert C

(E)
(A) IS)
7 (R)

add new
node here

right link red
so rotate left

PO

—

to fix color invariants

30

Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

‘D search ends
_— at this

a null link

attached new

@ o node with

d link
a G re

colors flipped
@ «— to black

(a) (o

smaller

N search ends
at this null link

attached new
ode with
red link

rotated
right
(@) (c)

colors flipped
to bﬁflg
(@) (o)

between

e search ends
““at this null link

attached new
~—

node with
@ red link

9 rotated left

rotated
« right

colors flipped
@ «— to black

31

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.

to maintain symmetric order
e« Do standard BST insert; color new link red. «<—— and perfect black balance
« Rotate to balance the 4-node (if needed).

e Flip colors to pass red link up one level. S

« Rotate to make lean left (if needed).

inserting H two lefts in a row
G S0 rotalte right
add new
node here
right link red
so rotate left
both children red l

so flip colors

l

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

to maintain symmetric order
e« Do standard BST insert; color new link red. «<—— and perfect black balance

« Rotate to balance the 4-node (if needed).
e Flip colors to pass red link up one level.

<«——— to fix color invariants
« Rotate to make lean left (if needed).

« Repeat case 1 or case 2 up the tree (if needed).

inserting P

Q right link red

G 9 so rotate left
Q m X m both children
red so
;igi’;fe”:e flip colors

two lefts 1
wo lefis in a row both children red

so rotate right \

so flip colors

33

Red-black BST construction demo

insert S

=

34

Red-black BST construction demo

red-black BST

35

Insertion in a LLRB tree: Java implementation

Same code for all cases.

« Right child red, left child black: rotate left.

o Left child, left-left grandchild red: rotate right.
« Both children red: flip colors.

h
left "
) gé rotate ;&

flip
qé\g colors

\right
rotate
private Node put(Node h, Key key, Value val)
{
if (h == null) return new Node(key, val, RED); N
int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); <«——
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); «—
if (isRed(h.left) && isRed(h.right)) flipColors(h); <

return h;

1

only a few extra lines of code provides near-perfect balance

insert at bottom
(and color it red)

lean left
balance 4-node
split 4-node

36

Insertion in a LLRB tree: visualization

Insertion in a LLRB tree: visualization

M D O 0

255 insertions in descending order

Insertion in a LLRB tree: visualization

N =255

max = 10

avg = 7.3

opt=7.0

1 "l l‘l’ ‘l “‘ H
l l l ll] g

255 random insertions

M

lll

39

Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.
Pf.

o Every path from root to null link has same number of black links.

! A‘K A‘
O A A it «?’

Property. Height of tree is ~ 1.0 Ig N in typical applications.

40

ST implementations: summary

guarantee average case
implementation . :
ops: interface
sequential se?rch N N N Yy N N N SeuET50)
(unordered list)
binary search N N le N 1 N 1 N v compareTo()
(ordered array)
separate chaining equals()
hash table A A b = = o hashCode ()
linear probing equals()
hash table N N N 3-5 3-5 3-5 hashCode()
BST N N N 1391gN 1391gN VN v compareTo()
2-3 tree clgN clgN clgN clg N clg N clg N v compareTo()
red-black BST 21gN 2I1gN 21gN 10IgN™ 10IlgN™ 10IlgN”™ v compareTo()

* exact value of coefficient unknown but extremely close to 1

41

War story: why red-black?

Xerox PARC innovations. [1970s]

Alto.

GUI.
Ethernet.
Smalltalk.
InterPress.

XEROX.

Laser printing.

Bitmapped display.
WYSIWYG text editor.

Xerox Alto

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

L.co J. Guibas

Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

ABSTRACT

In this paper we present a uniform framework for the implementation
and study of balanced tree algovithms. We show how to imbed in this

Robert Sedgewick*

Program in Computer Science
and Brown University

Providence, R. I,

the way down towards a lcaf. As we will sce, this has a number of
significant advantages over the older methods. We shall examine a
number of varations on a common theme and cxhibit full
implementations which are notable for their brevity. One
implementation is cxamined carcfully, and some propertics about its

42

War story: red-black BSTs

Telephone company contracted with database provider to build real-time

database to store customer information.

Database implementation.
« Red-black BST search and insert; Hibbard deletion.

o Exceeding height limit of 80 triggered error-recovery process.

allows for up to 240 keys

Hibbard deletion
Extended telephone service outage. ,_~ was the problem

« Main cause = height bounded exceeded!

« Telephone company sues database provider.
e Legal testimony:

“ If implemented properly, the height of a red-black BST
with N keys is at most 2 lg N. © — expert witness

i

43

3.3 BALANCED SEARCH TREES

» B-frees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

fast

Property. Time required for a probe is much larger than time to access

data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

45

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M -1 key-link pairs per node.
At least 2 key-link pairs at root.

choose M as large as possible so
At least M /2 key-link pairs in other nodes. that Mlinks fitin a page, e.g., M = 1024

External nodes contain client keys.

Internal nodes contain copies of keys to guide search.

/2 node

sentinel ke)’ / N’nal 3-node
~ each red key is a copy ___

of min key in subtree K|Q'U

external
3- node / \\ external 5- node (fV Nﬂalé@ node

C DEF KMNOP QRIT UW XY

client keys (black) all nodes except the root are 3-, 4- or 5-nodes
are in external nodes

Anatomy of a B-tree set (M = 6)

46

Searching in a B-tree

« Start at root.
e Find interval for search key and take corresponding link.
e Search terminates in external node.

searching for E

follow this link because

E is between * any

*D|H|

follow this link because

_—E 1sbetween D and H

search for E in A

this external node

Searching in a B-tree set (M = 6)

47

Insertion in a B-tree

« Search for new key.
e Insert at bottom.
« Split nodes with M key-link pairs on the way up the tree.

inserting A *THIKI QU
*|IB|C|IE|F HIJ KMNOP QR T U W X
* A B CEF
new key (A) causes *CIHIK TiP new key (C) causes
overflow and split Q overflow and split

* A B ClEIF

root split causes K'Q U
a new root to be created

— N

Inserting a new key into a B-tree set

CH I

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between log-1 N and lognz N probes.

Pf. All internal nodes (besides root) have between M /2 and M -1 links.

In practice. Number of probes is at most 4. «<—— M=1024; N =62 billion
logm2 N < 4

Optimization. Always keep root page in memory.

49

Building a large B tree

white: unoccupied portion of page
each line shows the result —
of inserting one key ——— >
in some page

black: occupied portion of page
/

——=F = =¢ = =r—=—or——3 = = i‘%\ full page splits into
e — — — —— —— —— —— —— —— two half -full pages

— e e e = = === thenanew keyisadded
- S s s - to one of them

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java:. java.util.TreeMap, java.util.TreeSet.
e C++ STL: map, multimap, multiset.
o Linux kernel: completely fair scheduler, Tinux/rbtree.h.
« Emacs: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
e« Windows: NTFS.
e Mac: HFS, HFS+.
e« Linux: ReiserFS, XFS, Ext3FS, JFS.
« Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

51

Red-black BSTs in the wild

’
LR S8 Rl

Common sense. Sixth sense.

logether they're the
FBI's newest team.

52

Red-black BSTs in the wild

ACT FOUR
FADE IN:
48 INT. FBI EQ -~ NICHT
Antonio is at THE COMPUTER as Jess explains herself to Nicole

and Pollock. The CONFERENCE TABLE is covered with OPEN
REFERENCE BOOKS, TOURIST CUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage
container.

JESS
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?

POLLOCK
Budget deficits? Red ink, black
ink?

NICOLE

Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical eguations.

ANTONIO
It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

48

53

START RECORDING

Attendance Quiz

Attendance Quiz:
2-3 Trees and Red-Black Trees

* Write your name and the date
* Working with a partner:
 Draw the 2-3 tree as a red-black tree

e Draw the red-black tree as 2-3 tree

ER

2-3 Tree Red-Black Tree

Summary

Summary of Search Trees and Symbol Tables

guarantee average case
ordered key

implementation ops? interface
search insert delete search hit insert delete

sequential search

]
(unordered list) N N N 72N N 2N equalsQ)
binary search lg N N N lg N 2 N s N v compareTo()
(ordered array)

o equals()
separate chaining N N N 3-5 * 3-5 % 3-5 * hashCode ()
)) equals()
linear probing N N N 3-5* 3-5 % 3-5 % hashCode ()

BST N N N 1391gN 1391gN VN v compareTo()
red-black BST 2IgN 21gN 21gN 101gN 101gN 101gN v compareTo()

* under uniform hashing assumption
58

Hash tables vs. balanced search trees

Hash tables.
e Simpler to code.
« No effective alternative for unordered keys.
« Faster for simple keys (a few arithmetic ops versus log N compares).
« Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
« Stronger performance guarantee.
« Support for ordered ST operations.

e Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.
« Red-black BSTs: java.util.TreeMap, java.util.TreeSet.

« Hash tables: java.util.HashMap, java.util.IdentityHashMap.

59

