Hash Tables

CS 121: Data Structures

START RECORDING

Outline

Attendance quiz

Review: Comparable and Equals from "Symbol Tables" slides
Hash functions

Separate chaining

Linear probing

Context

Attendance Quiz

Attendance Quiz: Symbol Tables

 Scan the QR code, or find
today’s attendance quiz
under the “Quizzes” tab
on Canvas

e Password: to be
announced

Attendance Quiz: Symbol Tables

* Write your name and the
date

e Draw the data structures of

symbol tables containing the C 3
data shown at the right for: A '

. A symbol table z 26
Implemented using an B 2

unordered linked list

* A symbol table
Implemented using
ordered arrays

No Office Hours This
Friday (3/31)

A 1 g Oor 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.4 HASH TABLES

> hash functions
» separate chaining
> linear probing

» contlext

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Symbol table implementations: summary

guarantee average case
ordered

implementation ops?
search insert delete search hit insert delete

sequential search

key
interface

equals()

compareTo()

! 1
(unordered list) N N N 2 N N s N
binary search lo N e v o N "N N .
(ordered array) g g b 5
Unordered List
B 2 —_—tp /7 26 —_—tp| A 1 —

Ordered Arrays

A B C Z
Q. Can we do better?

A. Yes, but with different access to the data.

Symbol table implementations: this lecture

guarantee average case
ordered key

implementation ops? interface
search insert delete search hit insert delete

sequential search

]
(unordered list) N N N 2N B 2N HRIS
binary search lg N N N lg N b N N v compareTo()
(ordered array)
) equals()
This lecture... N N N 3-5 % 3-5°% 3-5 %

hashCode ()

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

hash("it") = 3 — 2
3

?7?
7,
Issues. hash("times") = 3 / 5
« Computing the hash function.
« Equality test: Method for checking whether two keys are equal.
o Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

||_itll

11

3.4 HASH TABLES

» hash functions

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
« Efficiently computable.
« Each table index equally likely for each key.

\ thoroughly researched problem,
still problematic in practical applications

Ex 1. Phone numbers.
« Bad: first three digits.
. Better: last three digits. table

index

Ex 2. Social Security numbers.
. Bad fiI’St three dIgItS <«—— 573 =California, 574 = Alaska
- - (assigned in chronological order within geographic region)

« Better: last three digits.

Practical challenge. Need different approach for each key type.

13

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).
Highly desirable. If Ix.equals(y), then (x.hashCode() != y.hashCode()).

X y
i i
v v
X .hashCode () y .hashCode ()

Default implementation. Memory address of x.
Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, ...

User-defined types. Users are on their own.

14

Implementing hash code: integers, booleans, and doubles

Java library implementations

public final class Integer

{

private final int value;

public 1nt hashCode()
{ return value; }

public final class Boolean

{

private final boolean value;

public 1nt hashCode()

{
if (value) return 1231;

else return 1237;

public final class Double

{
private final double value;
public 1nt hashCode()
{
long bits = doubleToLongBits(value);
return (int) (bits A (bits >>> 32));
}_ A
by

convert to |[EEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Warning: -0.0 and +0.0 have different hash codes

15

Implementing hash code: strings

Java library implementation

public final class String

{
private final char[] s;
'a' 97
public int hashCode() b 78
{ 'c' 99
int hash = 0;
for (int 1 = 0; 1 < length(Q); 1++)
hash = s[1] + (31 * hash);
return hash; “\\\\
} ith character of s
}

 Horner's method to hash string of length L: L multiplies/adds.
 Equivalentto A=s[0] - 3141 + ...+ s[L-3] 312 + s[L-2]- 31! + s[L-1]"- 310,

Fx. String s = "call";
int code = s.hashCode(); «——— 3045982 =99-313+97-312+ 108-31"+ 108-310
=108+ 31-(108 + 31 -(97 + 31 -(99)))

(Horner's method) 6

Implementing hash code: strings

Performance optimization.
e Cache the hash value in an instance variable.
e Return cached value.

public final class String

{
private int hash = 0; T
private final char[] s;

public 1nt hashCode()
{
int h = hash; -—
1f (h '= 0) return h;
for (int 1 = 0; 1 < length(); i++)
h s[i1] + (31 * h);
hash = h; A
return h;

Q. What if hashCode() of string is 07

cache of hash code

return cached value

store cache of hash code

17

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>
{

private final String who;

private final Date when;

private final double amount;

public Transaction(String who, Date when, double amount)
{ /* as before */ }

public boolean equals(Object y)
{ /* as before */ }

public 1nt hashCode()
nonzero constant

{ /
int hash = 17; for reference types,

hash = 31*hash + who.hashCode(); < use hashCode ()
hash = 31*hash + when.hashCode(); -
hash = 31*hash + ((Double) amount).hashCode(): < for primitive types,

return haSQi\\\ use hashCode ()
} of wrapper type
¥ typically a small prime

Hash code design

"Standard” recipe for user-defined types.
« Combine each significant field using the 31x +y rule.

If field is a primitive type, use wrapper type hashCode().
If fie

d
If field is a reference type, use hashCode(). «—— applies rule recursively
If fielc

IS null, return O.

is an array, apply to each entry. <«—— oruse Arrays.deepHashCode ()

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Keys are bitstring; "universal” hash functions exist.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

19

Modular hashing

Hash code. An int between -231 and 231 - 1.
Hash function. An int between 0 and M - 1 (for use as array index).

N

typically a prime or power of 2

private int hash(Key key)
{ return key.hashCode() % M; }

bug

v
v

X .hashCode()

v
private int hash(Key key)
{ return Math.abs(key.hashCode()) % M; }

v

1-in-a-billion bug

\ hash(x)
hashCode () of "polygenelubricants" is -23!

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

correct

20

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an
integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Birthday problem. Expect two balls in the same bin after ~\/n:M/ 2 tosses.

Coupon collector. Expect every bin has =1 ball after ~M In M tosses.

Load balancing. After M tosses, expect most loaded bin has
© (log M /loglog M) balls.

21

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an
integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

22

3.4 HASH TABLES

> separate chaining

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Collisions

Collision. Two distinct keys hashing to same index.
« Birthday problem = can't avoid collisions unless you have
a ridiculous (quadratic) amount of memory.
« Coupon collector + load balancing = collisions are evenly distributed.

hash("1t") = 3

4
hash("times") = 3 /

Challenge. Deal with collisions efficiently.

24

Separate-chaining symbol table

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]
« Hash: map key to integer i between 0 and A - 1.
e Insert: put at front of it. chain (if not already there).
« Search: need to search only it chain.

key hash
S 2
A 0
R4 st[] null
C 4 0 /
H 4 .
) 2 [S
E 3
X 2 4 \
A 0 L > P
M 4
P 3 M >~ H C
L 3
E 0

Separate-chaining symbol table: Java implementation

public class SeparateChainingHashST<Key, Value>

{

private int M = 97; // number of chains

private Node[] st = new Node[M]; // array of chains

private static class Node

{

private Object key; <«—— no generic array creation
private Object val; «—— (declare key and value of type Object)

private Node next;

}

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

public Value get(Key key) {
int 1 = hash(key);
for (Node x = st[i]; X != null; x = X.next)
it (key.equals(x.key)) return (Value) x.val;
return null;

array doubling and
halving code omitted

26

Separate-chaining symbol table: Java implementation

public class SeparateChainingHashST<Key, Value>

{
private int M = 97; // number of chains
private Node[] st = new Node[M]; // array of chains

private static class Node
{
private Object key;
private Object val;
private Node next;

}

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

public void put(Key key, Value val) {
int 1 = hash(key);

for (Node x = st[i]; X != null; x X.hext)

1f (key.equals(x.key)) { x.val = val; return; }
st[1] = new Node(key, val, st[1]);

27

Analysis of separate chaining

Proposition. Under uniform hashing assumption, prob. that the number of
keys in a list is within a constant factor of N/ M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

__(10,.12511...)

A —.125

| | | | -0
0 10 20 30

Binomial distribution (N = 104, M =103, o = 10)

equals() and hashCode()

Consequence. Number of probes for search/insert is proportional to N/ M.
e Mtoo large = too many empty chains. T
 Mtoo small = chains too long. M times faster than

sequential search

 Typical choice: M~N/4 = constant-time ops.

28

Resizing in a separate-chaining hash table

Goal. Average length of list N/ M = constant.
 Double size of array M when N/ M = 8.
 Halve size of array M when N/ M < 2.

 Need to rehash all keys when resizing. «<— x.hashCode() does not change
but hash(x) can change

before resizing

st[]

=

~
-
Y

<
v

Z
@)
v

-

after resizing

st[]/K—>|
0
. __________________..;P—»N > L » E —» A
: > | > F —» C > B
3

\O—>M > H » G —» D

29

Deletion in a separate-chaining hash table

Q. How to delete a key (and its associated value)?

A. Easy: need only consider chain containing key.

before deleting C

St[]/

\ 4
—

Y

after deleting C

St[]/

Y

Y

30

Symbol table implementations: summary

guarantee daverage case

ordered key

implementation ops? interface
search insert delete search hit insert delete

sequential search

1
(unordered list) N N N s N N
binary search
(ordered array) lgN N N lg N b N
separate chaining N N N 3.5 * 3.5 %

2N

N

3-5 %

equals()

v compareTo()

equals()
hashCode ()

* under uniform hashing assumption

31

3.4 HASH TABLES

> linear probing

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

st[0] jocularly
st[1] null
st[2] Tisten
st[3] suburban
null
st[30000] browsing

linear probing (M = 30001, N = 15000)

Linear Probing Demo

Linear-probing hash table summary

Hash. Map key to integer i between 0 and M-1.
Insert. Put at table index 1 if free; if not try i+1, i+2, etc.
Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Note. Array size M must be greater than number of key-value pairs N.

st[] P M A C S H L E R X

16

35

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value>

{

private int M = 30001;
private Value[] vals = (Value[]) new Object[M]; <

private Key[] keys = (Key[]) new Object[M];

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

private void put(Key key, Value val) { /* next slide */ }

public Value get(Key key)

{
for (int i = hash(key); keys[i] !'= null; 1 = (i+1) % M)
1f (key.equals(keys[1]))
return vals[1];
return null;
}

array doubling and
halving code omitted

36

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value>

{
private int M = 30001;

private Value[] vals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];
private int hash(Key key) { /* previous slide */ }
private Value get(Key key) { /* previous slide */ }

public void put(Key key, Value val)
{

int 1;
for (1 = hash(key); keys[i] != null; 1 = (G+1) % M)
if (keys[i].equals(key))
break;
keys[1] = key;
vals[i1] = val;

37

Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

A

EE EEEE

38

Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces.

Each desires a random space i : if space i is taken, try i+ 1,i+ 2, etc.

Q. What is mean displacement of a car?

J isplacement = l
5 NS5 B W)) W) W5

5 W5

Half-full. With M /2 cars, mean displacement is ~ 3 /2.
Full. With M cars, mean displacement is ~~/m M/8 .

39

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes
in a linear probing hash table of size M that contains N = a M keys is:

1 |4 1 1 |+ 1
2 1l -« 2 (1 — 04)2
search hit search miss / insert

Pf.

- NOTES On "OPEN" ADDRESSING. "D, Knubh, 7/22/63
L. Istroduction and Pefinitions. Upen médressing is a widely-used technique
- for keeping "symbol tsbles,” The nethod was first used in 1954 by Samuel, Awmdshl,
and Bochme in an assembly program “or the IHM TOl, An extensive discussion of
the method was given by Peterson in 1957 {1), und {requent references have been
wade to it ever since (e.g, Schay and Spruth {2], Iversen [3}). However, the
tlwing characteristics have apparently never besn oxectiy established, and indeed
the anthor has heard reports of severel reputable mathematiciana whe falled so
find the solution after some trial. Tharefore it is the purpsse of this note to
indicate one way by which the solu.ion cen be cbiained,

Parameters.
« Mtoo large = too many empty array entries.

« Mtoo small = search time blows up.

probes for search hit is about 3/2
probes for search miss is about 5/2

 Typical choice: a = N/M ~ %.

40

Resizing in a linear-probing hash table

Goal. Average length of list N/ M < 4.
 Double size of array M when N/ M = .
« Halve size of array M when N/M < .
« Need to rehash all keys when resizing.

before resizing

0 1 2 3 4 5 6 /
keys[] E S R A
vals|[]
after resizing
0 1 2 3 4 5 6 / 8 9 10 11
keys[] A S E

vals|[]

12

13

14

15

41

Deletion in a linear-probing hash table

Q. How to delete a key (and its associated value)?
A. Requires some care: can't just delete array entries.

before deleting S
0 1 2 3 4 5 6 / 8 9 10 11 12 13

keys[] P M A C S H L E

vals[]

doesn't work, e.g., if hash(H) = 4
after deleting S ?

keys[] P M A C H L E

vals[]

14

14

15

15

42

ST implementations: summary

implementation

sequential search
(unordered list)

binary search
(ordered array)

separate chaining

linear probing

guarantee

daverage case

ordered key

ops? interface
search insert delete search hit insert delete

N

lg N

N

N

N

2N

lg N

3-5 %

3-5 %

N

N

3-5 %

3-5 %

s N equals()

W N v compareTo()
35 pashode0
3-5 7 hi‘i‘ﬁ?lii)o

* under uniform hashing assumption

43

START RECORDING

Attendance Quiz

Attendance Quiz: Hashing

* Write your name and the date

* Describe the relationship between “hash codes” and
“hash functions”

 What properties should hash codes have?

 What properties should hash functions have?

3.4 HASH TABLES

Algorithms

» contlext

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

st[]

/////’

malicious adversary learns your hash function

(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

N o ot AW N RO

Real-world exploits. [Crosby-Wallach 2003]
o IDS server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.
« Perl 5.8.0: insert carefully chosen strings into associative array.
e Linux 2.4.20 kernel: save files with carefully chosen names.

48

War story: String hashing in Java

String hashCode() inJava 1.1.
« For long strings: only examine 8-9 evenly spaced characters.
« Benefit: saves time in performing arithmetic.

public int hashCode()

{
int hash = 0;
int skip = Math.max(1, Tength() / 8);
for (int 1 = 0; 1 < Tength(Q); 1 += skip)
hash = s[1] + (37 * hash);
return hash;

« Downside: great potential for bad collision patterns.

http://www.cs.princeton.edu/introcs/131oop/Hello.java
http://www.cs.princeton.edu/introcs/131oop/Hello.class
http://www.cs.princeton.edu/introcs/131oop/Hello.html
http://www.cs.princeton.edu/introcs/12type/index.html

t t t t t t t t

49

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.html

War story: algorithmic complexity attacks

A Java bug report.

Jan Lieskovsky 2011-11-01 10:13:47 EDT Description

Julian Walde and Alexander Klink reported that the String.hashCode() hash function is not sufficiently collision
resistant. hashCode() value is used in the implementations of HashMap and Hashtable classes:

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

A specially-crafted set of keys could trigger hash function collisions, which can degrade performance of HashMap
or Hashtable by changing hash table operations complexity from an expected/average O(1l) to the worst case O(n).
Reporters were able to find colliding strings efficiently using equivalent substrings and meet in the middle
techniques.

This problem can be used to start a denial of service attack against Java applications that use untrusted inputs
as HashMap or Hashtable keys. An example of such application is web application server (such as tomcat, see bug
#75652+) that may fill hash tables with data from HTTP request (such as GET or POST parameters). A remote
attack could use that to make JVM use excessive amount of CPU time by sending a POST request with large amount
of parameters which hash to the same value.

This problem is similar to the issue that was previously reported for and fixed

in e.g. perl:
http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach UsenixSec2003.pdf

50

Algorithmic complexity attack on Java

Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

hashCode () key hashCode ()

"Aa" 2112 "AaAaAaAa" -540425984 "BBAaAaAa" -540425984
"BB" 2112 "AaAaAaBB" -540425984 "BBAaAaBB" -540425984
"AaAaBBAa" -540425984 "BBAaBBAa" -540425984
"AaAaBBBB" -540425984 "BBAaBBBB" -540425984
"AaBBAaAa" -540425984 "BBBBAaAa" -540425984
"AaBBAaBB" -540425984 "BBBBAaBB" -540425984
"AaBBBBAa" -540425984 "BBBBBBAa" -540425984
"AaBBBBBB" -540425984 "BBBBBBBB" -540425984

2N strings of length 2N that hash to same value!

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired
value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0O, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160,

N _/
~,

known to be insecure

String password = args[0];
MessageDigest shal = MessageDigest.getInstance("SHA1");
byte[] bytes = shal.digest(password);

/* prints bytes as hex string, such as:
* B5764C27DB3299C4DC18ED922890F90EA6C336F1

h"
”

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

52

Creative Use of Hash Codes Can Lead to Bugs

Google fixes nightmare Android bug that
stopped user from calling 911

An integer overflow/underflow crash lets misbehaving
apps lock users out of 911.

Ron Amadeo - 1/5/2022, 6:09 PM

Android's January security patch is out, and it's addressing one of the nastiest
Android bugs to come up in some time: certain apps can stop you from contacting
911 or other worldwide emergency services numbers.

In early December, a harrowing tale popped up in the GooglePixel subreddit from a
user whose Pixel 3 crashed when they needed it most: while dialing 911 for their
grandmother who "appeared to be having a stroke." The whole phone subsystem
seemed to immediately crash upon calling emergency services, with user
"KitchenPicture5849" saying they couldn't get the call to connect or hang up to try
the call again. Luckily, a nearby landline was available after their Android phone let
them down, and emergency services was able to be contacted.

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/ -

https://arstechnica.com/author/ronamadeo/
https://www.reddit.com/r/GooglePixel/comments/r4xz1f/pixel_prevented_me_from_calling_911/
https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/

Creative Use of Hash Codes Can Lead to Bugs

« Android allows different apps to be used as dialers (e.g., the default
dialer, Skype, Microsoft Teams, etc.).

« To determine which dialer to use for a call, the dialers are sorted. As a
fallback, when all other attributes are the same, hash codes were
compared to give an arbitrary but consistent ordering.

The buggy code:

return accountl.hashCode() - account2.hashCode();

Fixed code:

return Integer.compare(accountl.hashCode(), account2.hashCode());

« Why would this cause undefined behavior (e.g., "crashing”)? Consider:
e accountl.hashCode() - MAX_INTEGER
e account2.hashCode() - -20
e account3.hashCode() - 30

54

Separate chaining vs. linear probing

Separate chaining.
« Performance degrades gracefully.
o Clustering less sensitive to poorly-designed hash function.

Linear probing.

« Less wasted space. A E
« Better cache performance.
st[] null
O /
1
2 X S
3
\ \
\L P
M H
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
keys[] | P | M A|lC|S|H]|L E R | X

vals[]

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. [separate-chaining variant]
« Hash to two positions, insert key in shorter of the two chains.
« Reduces expected length of the longest chain to log log V.

Double hashing. [linear-probing variant]
« Use linear probing, but skip a variable amount, not just 1 each time.
« Effectively eliminates clustering.
o Can allow table to become nearly full.
« More difficult to implement delete.

Cuckoo hashing. [linear-probing variant]
« Hash key to two positions; insert key into either position; if occupied,
reinsert displaced key into its alternative position (and recur).

« Constant worst-case time for search.

56

Hash tables vs. balanced search trees

Hash tables.
e Simpler to code.
« No effective alternative for unordered keys.
« Faster for simple keys (a few arithmetic ops versus log N compares).
« Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
« Stronger performance guarantee.
« Support for ordered ST operations.

e Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.
« Red-black BSTs: java.util.TreeMap, java.util.TreeSet.

« Hash tables: java.util.HashMap, java.util.IdentityHashMap.

57

