Java Basics

CSCI 121: Data Structures

START RECORDING

Outline

About the course

Textbooks

Related course: CSCI 122, “Introduction to Discrete Structures”
Why Java”?

Program development

About the Course

Instructor: Dr. Peter Story
 Happy to answer emails, meet before/after class, etc.
» Office hours: Monday 3pm-4pm and Friday 1:30pm-2:30pm in BP334

Website: https://cs.clarku.edu/~cs121/

* Check frequently!

e Syllabus, schedule, assignments, readings, lecture slides, etc.
Canvas: resources | can’t post on the course website
Attendance quizzes:

* Arrive 5 minutes early! Attendance quizzes will be handed out exactly at class time.

https://cs.clarku.edu/~cs121/

Textbooks

e Main textbook:

e “Algorithms,” 4th edition, by R. Sedgewick and
K. Wayve

e Virtual textbook for Java:

» “Java for Python Programmers,” by Brad Miller

Algorithms

e |Interactive

 Open-source: if you find a problem, let me
know, and we can fix it!

Lets look at a Java Program

A time-honored tradition in Computer Science is to write a program called “hello world.” The “hello world”
program is simple and easy. There are no logic errors to make, so getting it to run relies only on
understanding the syntax. To be clear, lets look at a “complicated” version of hello world for Python:

def main():
print("Hello World!")

Remember that we can define this program right at the Python command line and then run it:

>>> main()
"Hello World!'"

>>2>

Now lets look at the same program written in Java:

Load History Show Codelens

public class Hello {

1

2

3 public static void main(String[] args) {
4 System.out.println("Hello World!");
> }
6

/

8

Related Course:
CSCI 122 Introduction to Discrete Structures

* Required for Computer Science (CS) Major and Minor, and the

ESSENTIAL DISCRETE . L
MATHEMATICS FOR Data Science Major’s CS Track

COMPUTER SCIENCE

* Follows curriculum guidelines from ACM and |IEEE

5 // .\\. * Covers discrete topics essential for CS and DS
 Foundational Concepts and Proof Techniques
) Y * Undirected and Directed Graphs
\\’// * Order Notations and Counting

HARRY LEWIS & RACHEL ZAX * Discrete Probability, if time permits

 Jeaches mathematical reasoning, and help students learn to
Section 1: MWF 9am-10:15am think and prove formally and precisely — invaluable skills

Section 2: MWF 10-25am-11:40am * |n-class problem sessions, active learning

Website Tour

Gradescope

e Submit homework and labs
via Gradescope

 Code is tested automatically

Resubmissions allowed
until the deadline

But don’t become
dependent on Gradescope
finding your bugs — later
assignments will give less
descriptive messages!

Autograder Results

1.0) Test HelloWorld (20.0/20.0)
2.0) Test HiFour (20.0/20.0)
3.0) Test Ordered (20.0/20.0)

4.0) Test GreatCircle (10.0/10.0)

Results

Code

4.1) Test GreatCircle, hiding issues (10.0/10.0)

5.0) Test RGBtoCMYK (20.0/20.0)

Student
Peter Story

Autograder Score
100.0/100.0

Passed Tests

1.0) Test HelloWorld (20.0/20.0)
.0) Test HiFour (20.0/20.0)
.0) Test Ordered (20.0/20.0)

.1) Test GreatCircle, hiding issues (10.0/10.0)

2.0)
3.0)
4.0) Test GreatCircle (10.0/10.0)
4.1)
5.0)

.0) Test RGBtoCMYK (20.0/20.0)

Question 2

readme

Question 3

Didn't use if-statements

Question 4

Included screenshots

0.0 / 10.0 pts

6.0 / 6.0 pts

0.0/ 6.0 pts

Questions?

Why Java?

Why Java?

 Why not just teach data structures using Python (or C++)?

* Learning new languages and tools is a skill. Many differences between programming in Java
and Python. For example:

 Compilation:
e Java: A distinct compilation step, prior to execution. Many automatic checks.
* Python: JIT-compiler
* EXxceptions:
» Java support explicit exceptions, which must be handled by method callers
e Syntax: many subtle differences
e Types:
e Java is “strongly typed”
* Python uses dynamic typing

30

25

N
-

Ratings (%)
o

—
-

D | e >
0

2002 2004 2006
=== Python

== Assembly language

TIOBE Programming Community Index

Source: www.tiobe.com

2008 2010
mm
== \/isual Basic

PHP

2012 2014

e CH++
JavaScript

2016

2018

=== java
== SQL

2020

2022

Ratings (%)

30

20

10

TIOBE Programming Community Index

Source: www.tiobe.com

[}

| | | | | | | | |
2002 2004 2006 2008 2010 2012 2014 2016 2018

== Python m C w C++ === Java

mm CH# == \/isual Basic == |avaScript == SQL

== Assembly language === PHP

2020

2022

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

1. Basic Programming

OMPUTER
CSCIENCE Concepts

Al’rd ciplinary Appro h,

 ROBERT SEDGEWICK
],.]—].2 n. KEVIN WAYNE

http://introcs.cs.princeton.edu

http://introcs.cs.princeton.edu

Anatomy of your first program

text file named
HelloWorld. java

>

public class|HelloWorld

{

program name

l

public static void main(String[] args)

{

System.out.printin("Hello, World");

} A

body of main()
(a single statement)

main() method

|6

Anatomy of your next several programs

text file named
MyProgram. java

>

public class|MyProgram

{

program name

l

public static void main(String[] args)

{

body of main()
(a sequence of statements)

main() method

|7

Pop quiz on "your first program"

Q. Use common sense to cope with the following error messages.

% javac MyProgram.java
% java MyProgram
Main method not public.

% javac MyProgram.java
MyProgram.java:3: invalid method declaration; return type required

public static main(String[] args)
A

|18

Pop quiz on "your first program"

Q. Use common sense to cope with the following error messages.

% javac MyProgram.java
% java MyProgram
Main method not public.

A. Must have forgotten “public’.

% javac MyProgram.java
MyProgram.java:3: invalid method declaration;

public static main(String[] args)
A

public static void main(String[] args)

return type required

A. Check HelloWorld. Aha! Forgot “void".

public static void main(String[] args)

19

Three versions of the same program.

public class HelloWorld

{
public static void main(String[] args)
{
System.out.println("Hello, World");
}
}
/***
* Compilation: javac HelloWorld. java
* Execution: java HelloWorld
*
* Prints "Hello, World". By tradition, this is everyone's first program.
*
* % java HelloWorld
* Hello, World
*
***/
public class HelloWorld {
public static void main(String[] args) { \
System.out.println("Hello, World") ; ; .
) e
) N
&R i
,///
b= SR : - : - : : ' " B
= public class HelloWorld { public static void main(String[] args) { System.out.printin("Hello, World"); } }
JAVA

Lesson: Fonts, color, comments, and extra space are not required by the Java
language, though extremely important for readability and maintainability. 20

Note on program style

. . . . ®OO elloWorld.java
Different styles are appropriate in different contexts. [mumwww 3 Cr—

 Integrated development environment HelloWorld java

Below is the syntax highlighted version of HelloWorld.java from §1.1 Hello World.

B k .t
/***
* Compilation: javac HelloWorld. java
® OO Execution: java HelloWorld

Prints "Hello, World". By tradition, this is everyone's first program.

¢ java HelloWorld
Hello, World

e Your code

*
*
*
*
*
*
*
* These 17 lines of tex
*
*
*
*
*
*
*

6 Elements of Programming
they serve to remind
us what to type to co
the purpose of the pr
of the program and th
lines in our programs Program 1.1.1 Hello, World
Enforcing consistent style can confuse O e e o
i i u |
g y public class HelloWorld { public static void main(String[] args)
. {
St Ie Wi t h Ian uage public static void ma System.out.print("Hello, World");
u System.out.printl System.out.printin();
} }
}
}
This code is a Java program that accomplishes a simple task. It is traditionally a beginner’s first
program. The box below shows what happens when you compile and execute the program. The
Copyright © 2007, Robert Sedgewic} terminal application gives a command prompt (% in this book) and executes the commands
Last'updated: Wed.Jul 18 09:15:45 E that you type (javac and then java in the example below). The result in this case is that the

program prints a message in the terminal window (the third line).

-

% javac HelloWorld.java
% java HelloWorld
Hello, World

Emphasizing consistent style can

ProGraM 1.1.1 1S AN EXAMPLE OF a complete Java program. Its name is He1loWor1d,
- - which means that its code resides in a file named HeT1TloWor1d. java (by convention
® M a k e I t e a S I e r t O S p O t e r r O r S - in Java). The Program’s sqle action is to print a message back to tbe terminal win-
dow. For continuity, we will use some standard Java terms to describe the program,
but we will not define them until later in the book: Program 1.1.1 consists of a single
= m class named He17loWor1d that has a single method named main (). This method uses
[Make It eas Ie r fOr Others to read and use COde . two other methods named System.out.print() and System.out.println() to
do the job. (When referring to a method in the text, we use () after the name to
distinguish it from other kinds of names.) Until Section 2.1, where we learn about
. . . classes that define multiple methods, all of our classes will have this same structure.
o E a b I e d e e I O p e t e O e t t O p O d e S a I C e S For the time being, you can think of “class” as meaning “program.”
n V m n n V I r n m n r V I V I u u . The first line of a method specifies its name and other information; the rest is
a sequence of statements enclosed in braces and each followed by a semicolon. For
the time being, you can think of “programming” as meaning “specifying a class

Bottom line for you: Listen to the person assigning your grade.

or your boss!

A rich subset of the Java language vocabulary

built-in
types

int
long
double
char
String

boolean

punctuation

{
¥
(
)

operations on

numeric types

+

String
operations

+

length()
charAt()
compareTo()

matches ()

boolean
operations

Ttrue
false
!

&&
||

assignment

flow control
1t
else
for

while

arrvays

al]
length

new

object
oriented

static

class

public
private
new

final

toString()

main()

Math
methods
Math.s1n()
Math.cos()
Math.log()
Math.exp()
Math.pow()
Math.sqgrt()
Math.min()
Math.max()
Math.abs ()
Math.PI

type conversion methods

Integer.parselnt()

Double.parseDouble()

(() Java

‘__._—/

System
methods

System.print()
System.printin()
System.printf()

our Std methods
StdIn.read*()

StdOut.print*()
StdDraw. * ()
StdAudio.*()
StdRandom. * ()

Your programs will primarily consist of these plus identifiers (names) that you make up.

22

Image sources

http://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance. jpg
http://commons.wikimedia.org/wiki/File:Ada_Lovelace. jpg
http://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685) . pg
http://commons.wikimedia.org/wiki/File:James_Gosling_2005. jpg
http://commons.wikimedia.org/wiki/File:Bjarne-stroustrup.jpg

http://blog-images.muddymatches.co.uk.s3.amazonaws.com/dating-advice/wp-content/uploads/2013/01/Bad-qguy. jpg

CS.1.A.Basics.Why

http://commons.wikimedia.org/wiki/

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

l. Basic Programming Concepts

* Why programming?

* Program development
* Built-in data types

* Type conversion

CS.1.B.Basics.Develop

Program development in Java

is a three-step process, with feedback

1. EDIT your program
* Create it by typing on your computer's keyboard.
« Result: a text file such as Hel loWorld. java.

2. COMPILE it to create an executable file
e Use the Java compiler
« Result: a Java bytecode file such as HelloWorld.class

« Mistake? Go back to 1. to fix and recompile.
™ not a legal Java program

3. RUN your program
e Use the Java runtime.
« Result: your program’s output.

« Mistake? Go back to 1. to fix, recompile, and run.
™ a legal Java program that does the wrong thing

.

25

Software for program development

Any creative process involves cyclic refinement/development.

YOS
e &

I
WAL .
|
- = '.',..y|'n
. il

A significant difference with programs: We can use our computers to facilitate the process.

Program development environment: Software for editing, compiling and running programs.

Two time-tested options: (Stay tuned for details).

Virtual terminals Integrated development environment
« Same for many languages and systems. « Often language- or system-specific.
 Effective even for beginners. « Can be helpful to beginners.

Bottom line: Extremely simple and concise. Bottom line: Variety of useful tools.

26

Program development environments: a very short history

Historical context is important in computer science.
« We reqgularly use old software.
« We regularly emulate old hardware.
 We depend upon old concepts and designs.

Widely-used methods for program development

e switches and lights

« punched cards/compiler/runtime

e editor/compiler/runtime/terminal

e editor/compiler/runtime/virtual terminal
 integrated development environment

1960

1970

1980

1990

2000

27

Program development with switches and lights

Circa 1970: Use switches to input binary program code and data, lights to read output.

switches

28

Program development with punched cards and line printers

Mid 1970s: Use punched cards to input program code and data, line printer for output.

IBM System 360, circa 1975

o

Ask your parents about the "computer center” for details.

29

Program development with timesharing terminals

Late 1970s: Use terminal for editing program, reading output, and controlling computer.

VAX 11/780 circa 1977

VT-100 terminal

Timesharing allowed many users to share the same computer.

30

Program development with personal computers (one approach)

1980s to present day: Use multiple virtual terminals to interact with computer.

« Edit your program using any text editor in a virtual terminal.
« Compile it by typing javac HelloWorld. java in another virtual terminal.
* Run it by typing java HelloWorld

. Jav a — ema 7—48 23
Hub11c class Helloworld
{

public static void main(String[] args)

{

O
®)

(]Java — bash — 48x12

virtual terminal for editor

System.out.printin("Hello, World");

}
}

R R RXRRRXRKXR |0

% javac HelloWorld.java <€

% java HelloWorld
He'|1o World \

-uu-:---F1 HelloWorld.java All L1 (Java/1

(No changes need to be saved)

virtual terminal to compile,

run and examine output

—invoke Java compiler at command line

invoke Java runtime at command line

virtual TV set

31

Program development with personal computers (another approach)

1980s to present day: Use a customized application for program development tasks.
« Edit your program using the built-in text editor.

« Compile it by clicking the “compile” button.

« Run it by clicking the “run” button or using the pseudo-command line.

e OO0
L_‘*New <3 Open | [Save E‘< Close | : 3@ Cut | [Copy Paste @ Undo @ Redo | : &Fin Compile Raset : | Run | JTest | Javadoc

/Users/rs/introcs /HelloWorld.java

“Integrated Development
Environment” (IDE)

=

HelloWorld.java [N 1 public class HelloWorld {
derﬂ“@w@ 2 public static void main(String[] args) {
: 3 System.out.println("Hello, World"); 7
i1 “run” button
http://drjava.org 2 }

7 “‘compile” button
9

10

11

12

13

14

i ceiod Console | Compiler Output |

Welcome to Drlava. Working directory is /Users/rs/introcs

pseudo-command line > java HelloWorld
Hello, World

>

Editing /Users/rs/introcs /HelloWorld.java

32

Software for program development: tradeoffs

Virtual terminals IDE
Pros Pros
« Approach works with any language. « Easy-to-use language-specific tools.
« Useful beyond programming. e System-independent (in principle).
« Used by professionals. « Used by professionals.
« Has withstood the test of time. « Can be helpful to beginners.
Cons Cons
« Good enough for long programs? * Overkill for short programs?
* Dealing with independent applications. * Big application to learn and maintain.
« Working at too low a level? « Often language- or system-specific.
This course: Used in lectures/book. Recommended for assignments.
33

Lessons from short history

Every computer has a program development environment that allows us to
 EDIT programs.

« COMPILE them to create an executable file.

« RUN them and examine the output.

Two approaches that have served for decades and are still
effective:

 multiple virtual terminals.
 integrated development environments.

NESSSSSS b Apple Macintosh 1984

IBM PC 1990s
Wintel ultrabooks 2010s

Xerox Alto 1978

34

Image sources

http://commons.wikimedia.org/wiki/Category:2013_Boston_Red_Sox_season#mediaviewer/
File:Koji_Uehara_2_on_June_15,_2013.jpg

http://thenationalforum.org/wp-content/uploads/2011/03/Legendary-Musicians.png
http://pixabay.com/p-15812/7?no_redirect

CS.1.B.Basics.Develop

Programming with IntelliJ

Step 1: Open Intellid
Step 2: Open Starter Files

< M hello

Eavoritas » [cos 126.iml

ﬁj Hello.class
N Hello.java

<+ Dropbox logo.png
¢ . dme.txt
/~: Applications R readme.tx
k" Documents

[.)] Desktop

@ Downloads
[£) Recents

New Folder Cancel

Credit to: https://lift.cs.princeton.edu/java/mac/

https://lift.cs.princeton.edu/java/mac/

Easy: Edit Existing .java Files

More Complicated: Create Your
Own .java Files

Credit to: https://lift.cs.princeton.edu/java/mac/

https://lift.cs.princeton.edu/java/mac/

Step 3: Click Project Name

@ Hello, World - logo.png

v

Projectv = — & — logo.png

ﬁ v I hello [COS 126] sources == FH @ O Vd 450x300 PNG (24-bit color) 114.11 kB

logo.png
readme.txt
> External Libraries

> Scratches and Consoles

|

4 | \

4
~ HELLOWDRL

B

Credit to: https://lift.cs.princeton.edu/java/mac/

https://lift.cs.princeton.edu/java/mac/

Step 4: Create .java File Using the LIFT Menu

e Select the “LIFT” = “New Java
Class” menu

New Java Class

 When prompted, type the class HelloWorld
name (e.g., HelloWorld) _—
Interface
 Don’t type .javal! IntelliJ Enum
automatically adds .java. _nnoteton

 Then, press Return

Credit to: https://lift.cs.princeton.edu/java/mac/

https://lift.cs.princeton.edu/java/mac/

Step 5: Compile Your Code

Click on the file (e.g., HelloWorld)
Select the “LIFT” — “Recompile ‘HelloWorld.java’ menu option

If compilation succeeds, you will receive confirmation in the status bar (at
bottom)

* Otherwise, an error message will be displayed

L]l Build completed successfully in 700 ms (moments ago)

Credit to: https://lift.cs.princeton.edu/java/mac/

https://lift.cs.princeton.edu/java/mac/

Step 6: Run Your Code

Run 'HelloWorld' with Arguments

° SeIeCt the “LlFT” —) “Run Enter Program Arguments:
‘HelloWorld" with Arguments”
menu option

Cancel

 When prompted, you can

optionally enter program Run: _] HelloWorld
/Library/Java/JavaVirtualMachines/adoptopenjdk-11.jdk/C
arguments Hello, World
o Program Output will appear at Process finished with exit code 0

the bottom of the window

ILJl Build completed successfully in 700 ms (moments ago)

Credit to: https://lift.cs.princeton.edu/java/mac/

https://lift.cs.princeton.edu/java/mac/

Technical Detalls

 What is special about the version of Intellid you installed?
e |t includes the LIFT plugin

e |t disables more advanced IntelliJ menus (these can be re-enabled, if
you’re adventurous)

|t installs four command-line programs (Jjavac—1ntrocs, java-
introcs, javac—algs4, java-—-algs4), and corresponding Java
libraries from the textbook authors (algs4.jar, 1introcs.jar,
stdlib.jar)

Technical Detalls

 \What is special about the project starter files”?

 They contain a hidden .lift folder, which includes libraries from the
textbook authors, and unit testing libraries

* The Intellid project is configured to use these files

Before Next Class

 (Get started on Homework 1
o At least try to install Intellid on your PC
My office hours are Monday 3pm-4pm and Friday 1:30pm-2:30pm

 Come prepared with questions!

Start of Semester Survey

Either follow the link on Canvas, or scan this QR code:

E .

a‘

*..

= 'j

af; --.'.'-';‘-

I'll use this survey to take attendance for today.

START RECORDING

Outline

* Attendance quiz
* Built-in data types

* [ype conversion

Attendance Quiz:
Differences Between Java and Python

* On a sheet of paper:
* Write your name and the date
* Briefly describe three differences between Java and Python

 We’ll discuss, then you can turn in the paper

Java vs JavaScript

e Java and JavaScript code is completely different!

 The naming similarities are due to JavaScript trying to piggyback on

Java’s popularity in the 90s

Java Hello World

public class HelloWorld

{
public static void main(String[] args)
{
System.out.printin("Hello, World");
}

<
<
<

JavaScript Hello World

ntml>
nead><title>Hello World</title></head>

vody>
<script>alert("Hello World!") ;</script>

</body>
</html>

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

l. Basic Programming Concepts

* Why programming?

* Program development
* Built-in data types

* Type conversion

CS.1.C.Basics.Types

Built-in data types

A data type is a set of values and a set of operations on those values.

type

char

String

1nt

double

boolean

set of values

characters

sequences of characters

Integers

floating-point numbers

truth values

examples of values

lAl
|@|

"Hello World"
"CS 1s fun"

17
12345

3.1415
6.022e23

true
false

Java's built-in data types

examples of operations

compare

concatenate

add, subtract, multiply, divide

add, subtract, multiply, divide

and, or, not

53

Basic Definitions

A variable is a name that refers to a value.

A literal is a programming-language representation of a value.

A declaration statement associates a variable with a type.

An assignment statement associates a value with a variable.

variables

declaration statements

assignment statements <

combined declaration
and assignment statement

literals

54

Variables, literals, declarations, and assignments example: exchange values

public class Exchange
r A trace is a table of variable values after each statement.
public static void main(String[] args) N o
{
1nt a = 1234;
int b = 99:- int a = 1234; 1234
1nt t = a; int b = 99; 99
— h- This code exchanges _
4 b; the values of a and b. nt t = a;
b = t;
) a = b; 99

Q. What does this program do?

A. No (easy) way for us to see the result of the exchange! (Need output, stay tuned).

1234

55

Data type for computing with strings: String

String data type

values sequences of characters
typical literals "Hello, " N o
operation concatenate
operator +

Examples of String operations (concatenation)

expression value
"Hi, " + "Bob" "Hi1, Bob"
B R S "1 2 1"
"1234" + " + " + "99" "1234 + 99"
"1234" + "99" "123499"

Typical use: Input and output.

" Important note:

Character interpretation depends on context!

Ex 1: plus signs

Ex 2: spaces

character

!

ll1234ll + 11 + 11 + ll99ll

I 1

operator operator
white white
space space

AT

Il1234ll + 11 + 11 + ll99|l

V

space
characters

56

Example of computing with strings: subdivisions of a ruler

public class Ruler

{

public static void main(String[] args)

{ _] all + ops are concatenation
String rulerl = "1"; !

121312141213 121

String ruler2 = rulerl + " 2 " + rulerl;
String ruler3 = ruler2 + " 3 " + ruler?2;
String ruler4d = ruler3 + " 4 " + ruler3;
System.out.printin(ruler4);

% java Ruler
121312141213121

rulerl ruler?2 rulers3 ruler4
rulerl = "1"; 1
ruler2 = rulerl + " 2 " + rulerl; 1 1 2 1
ruler3 = ruler2 + " 3 " + ruler2; 1 1 2 1 1213121

ruler4d = ruler3 + " 4 " + ruler3; 121312141213 121

Input and output

is necessary for us to provide data to our programs and to learn the result of computations.

command-line

Humans prefer to work with strings. _~ arguments
Programs work more efficiently with numbers.

Output

L)‘ standard output

« System.out.println() method prints the given string.

» Java automatically converts numbers to strings for output. Bird's eye view of a Java program

Command-line input

 Strings you type after the program name are available as args[0], args[1], ... at run time.
* Q. How do we give an integer as command-line input?

* A. Need to call system method Integer.parseInt() to convert the strings to integers.

Stay tuned for many more options for input and output, and more details on type conversion.

Input and output warmup: exchange values

public class Exchange

{
public static void main(String[] args)
{
int a = Integer.parselnt(args[0]);
int b = Integer.parselnt(args([1l]);
int t = a;
a =b;
b = t;
System.out.printlin(a);
System.out.println(b);
} I
} Java automatically converts 1nt values to String for output

% java Exchange 5 2
2

5

% java Exchange 1234 99
99
1234

Q. What does this program do?

A. Reads two integers from the command line, then prints them out in the opposite order.

59

Data type for computing with integers: int

1nt data type

values integers between —231 and 231-1
typical literals 1234 99 0 1000000 Important note:
operations add subtract multiply divide remainder Only 232 different int values.
operator + - * / % T

not quite the same as integers

Examples of int operations

expression value comment Precedence
5 + 3 3 expression value
> -3 2 3 % 5 - 2 13
> ¥ 3 15 3 +5 /2 5
5/ 3 1 drop fractional part 3 -5 _ 2 _4
5 % 3 2 remainder (3-5)-2 -4
1 /0 runtime error

Typical usage: Math calculations; specifying programs (stay tuned).

comment
* has precedence
/ has precedence
left associative

better style

60

Example of computing with integers and strings, with type conversion

public class IntOps

{
public static void main(String[] args)
{
1nt a = Integer.parselnt(args[0]);
int b = Integer.parselnt(args[1l]);
1nt sum = a + b;
1nt prod = a * b;
int quot = a / b;
int rem = a % b;
System.out.println(a + " + " + b + " =" +
System.out.println(a + " * " + b+ " =" +
System.out.printiln(a + " / " + b+ " =" +
System.out.println(a + " % " + b + " =" +
} I
h Java automatically converts 1nt values to String for concatenation

sum) ;
prod) ;
quot);
rem) ;

% java IntOps 5 2

5 + 2 =7
5 * 2 =10
5 % 2 =1

% java IntOps 1234 99
1234 + 99 = 1333

1234 * 99 = 122166
1234 / 99 = 12

1234 % 99 = 46

Note: 1234 =12%99 + 46

61

Data type for computing with floating point numbers: double

double data type

values real numbers 6022 % 1023
typical literals 3.14159 2.0 1.4142135623730951 6.022e23 /
Typical double values are approximations
operations add subtract multiply divide remainder
Examples:
operator + - * / %

no double value for 1.

no double value for v/2

Examples of double operations no double value for 1/3.

expression value

3.141 + .03 3.171 Special values

3.141 - .03 3.111 |

expression value

6.02e23/2 3.01e23

5.0 / 3.0 1.6666666666666667 1.0./°0.0 Infinity
10.0 % 3.141 0.577 Math.sqrt(-1.0) NaN
Math.sqgrt(2.0) 1.4142135623730951 T

"not a number”

Typical use: Scientific calculations.
62

Other built-in numeric types

short data type long data type
values integers between —215 and 215-1 values
operations [same as 1nt] operations

float data type

values real numbers

operations [same as double |

Why different numeric types?
* Tradeoff between memory use and range for integers.

* Tradeoff between memory use and precision for real numbers.

short
int, float

integers between —263 and 263—1

[same as 1nt |

long, double

63

Excerpts from Java’s Math Library

public class Math

double abs(double a)
double max(double a, double b)
double min(double a, double b)

double sin(double theta)

double cos(double theta)

double tan(double theta)

absolute value of a

also defined for

: «
maximum of a and b int, Tong, and float

minimum of a and b

sine function

cosine function -« ;
f asin(), acos(), and atan()

tangent function

\ Degrees in radians. Use toDegrees() and toRadians()) to convert.

double exp(double a)

double log(double a)
double pow(double a, double b)

long round(double a)

double random()

double sqrt(double a)

double E
double PI

exponential (e2)
natural log (loge a, or In a)

raise a to the bth power (ab)

round to the nearest integer
random number in [0. 1)

square root of a

approx. value of e (constant)

No need for calculators in

approx. value of it (constant) this course!

inverse functions also available:

64

Example of computing with floating point numbers: quadratic equation

—b:: \/b2 — 4c
2

From algebra: the roots of x* + bx + c are

65

What are roots?

Example
Roots of:

y=x*—2x+0

66

Example of computing with floating point numbers: quadratic equation

—b T b2 — 4c
From algebra: the roots of x* + bx+c are \/2
public class Quadratic
{ % java Quadratic -3.0 2.0
public static void main(String[] args) 2.0 2 — 3x 4+ 2
{ 1.0
// Parse coefficients from command-1line. % java Quadratic -1.0 -1.0
double b = Double.parseDouble(args[0]); 1.618033988749895 X2-—)K——1
double ¢ = Double.parseDouble(args[1]); -0.6180339887498949
// Calculate roots of x*x + b*x + cC. % java Quadratic 1.0 1.0
couo:e discriminant = p*b - 4.0*c; NaN X2_+)<%_1
double d = Math.sgrt(discriminant); NaN
double rootl = (-b + d) / 2.0;
double root2 = (-b - d) / 2.0; % java Quadratic 1.0 hello

java. lang.NumberFormatException: hello
// Print them out.

System.out.printin(rootl); % java Quadratic 1.0
System.out.printin(root2); java. lang.ArrayIndexOutOfBoundsException

Need two arguments./

(Fact of life: Not all error messages are crystal clear.)

Where are the roots?

Example
Roots of:

y=x"+x+1

No roots!

Data type for computing with true and false: boolean

boolean data type Truth-table definitions
values true false 5 13 -
literals true false true false false
_ false true false
operations and or not
true
operator && | | | true
Proof a b la && b
Q. a XOR b?
false false false
A.(la & b) || (a && 'b)
false true true
true false false
true true false

Typical usage: Control logic and flow of a program (stay tuned).

false
true
false

true

a && !b

false

false
true

false

a&&b ajl|b

false false
false true
false true
true true

(la & b) || (a && !b)

false
true
true

false

69

Comparison operators

Fundamental operations that are defined for each primitive type allow us to compare values.
e Operands: two expressions of the same type.
e Result: a value of type boolean.

operator meaning true false
== equal 2 == 2 ==
| = not equal 3 1= 2 2 1= 2
< less than 2 < 13 2 < 2
<= less than or equal 2 <= 2 3 <= 2
> greater than 13 > 2 2 < 13
>= greater than or equal 3 >= 2 2 >= 3

Typical double values are

Examples non-negative discriminant? (b*b - 4.0*%a*c) >= 0.0 < approximations so beware
of == comparisons

beginning of a century? (year % 100) ==

legal month? (month >=1) & (month <= 12)

Example of computing with booleans: leap year test

Q. Is a given year a leap year?

A. Yes if either (i) divisible by 400 or (ii) divisible by 4 but not 100.

public class LeapYear

{

public static void main(String[] args)

{
int year = Integer.parselnt(args[0]);
boolean 1sLeapYear;

// divisible by 4 but not 100

1sLeapYear = (year % 4 == 0) && (year % 100 != 0);

// or divisible by 400

1sLeapYear = 1sLeapYear || (year % 400 == 0);

System.out.printin(isLeapYear);

% java
true

% java
false

% java
false

% java
true

LeapYear 2016

LeapYear 1993

LeapYear 1900

LeapYear 2000

71

Image sources

http://commons.wikimedia.org/wiki/File:Calculator_casio.jpg

CS.1.C.Basics.Types

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

l. Basic Programming Concepts

* Why programming?

* Program development
* Built-in data types

* Type conversion

CS.1.D.Basics.Conversion

Type checking

Types of variables involved in data-type operations always must match the definitions.

The Java compiler is your friend: it checks for type errors in your code.

public class BadCode
{
public static void main(String[] args)
{
String s = "123" * 2;
}
}

% javac BadCode.java
BadCode.java:5: operator * cannot be applied to java.lang.String,int
String s = "123" * 2;
A

1 error

When appropriate, we often convert a value from one type to another to make types match.

74

Type conversion with built-in types

Type conversion is an essential aspect of programming.

Automatic expression type value
: noon "x: " 4+ 99 Strin "x: 99"
» Convert number to string for "+".)
_ _ o 11 * 0.25 double 2.75

« Make numeric types match if no loss of precision.

icitly defined for f _ 1 Integer.parselnt("123") int 123
Explicitly defined for function call. vath. round (2. 71828) Jong ;
Cast for values that belong to multiple types. (int) 2.71828 int .
« Ex: small integers can be short, 1nt or long. (int) Math.round(2.71828) int 3
 Ex: double values can be truncated to 1nt values. 11 * (int) 0.25 int 0

A Pay attention to the type of your data. «

Type conversion can give counterintuitive results
but gets easier to understand with practice

75

Pop quiz on type conversion

Q. Give the type and value of each of the following expressions.

a. (7/2) * 2.0

b. (7 /2.0) * 2

c. 2" + 2

d 2.0 + "2"

76

Pop quiz on type conversion

Q. Give the type and value of each of the following expressions.

a. (7 /2) * 2.0 6.0, a double (7/2 is 3, an 1nt)
b. (7 / 2.0) * 2 /7.0, a double
c. "2" 4+ 2 22,a String

d. 2.0 + "2" 2.02, a String

77

An instructive story about type conversion

Why different numeric types?
* Tradeoff between memory use and range for integers.
* Tradeoff between memory use and precision for floating-point.

short
int, float
long, double

A conversion may be impossible.
« Example: (short) 70000. o
* Short values must be between -215 and 25— 1=32767 .

What to do with an impossible conversion?
« Approach 1: Avoid doing it in the first place.
« Approach 2 (Java): Live with a well-defined result.

« Approach 3: Crash.

First launch of Ariane 5, 1996

78
https://www.bugsnag.com/blog/bug-day-ariane-5-disaster

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster

Example of type conversion put to good use: pseudo-random integers

System method Math.random() returns a pseudo-random double value in [0, 1).

Problem: Given N, generate a pseudo-random integer between 0 and N—1.

public class RandomInt

{

public static void main(String[] args)
{
int N = Integer.parselnt(args[0]); <

double r = Math.random();
int t = (int) (r * N);

double to 1nt (cast)/ \

System.out.printin(t);

1nt to double (automatic)

}

String to 1nt (system method)

% java RandomInt 6
3

% java RandomInt 6
0

% java RandomInt 10000
3184

79

Summary

A data type is a set of values and a set of operations on those values.

Commonly-used built-in data types in Java

« String, for computing with sequence of characters, for input and output.

 int, for computing with integers, for math calculations in programs.

 doubTe, for computing with floating point numbers, typically for science and math apps.
* boolean, for computing with true and false, for decision making in programs.

In Java you must:
e Declare the types of your variables.

« Convert from one type to another when necessary.

 |dentify and resolve type errors in order to compile your code.
Pay attention to the type of your data.

The Java compiler is your friend: it will help you identify and fix type errors in your code.

80

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

1. Basic Programming

OMPUTER
CSCIENCE Concepts

Al’rd ciplinary Appro h,

 ROBERT SEDGEWICK
],.]—].2 n. KEVIN WAYNE

http://introcs.cs.princeton.edu

http://introcs.cs.princeton.edu

