Linked Lists

CS 121: Data Structures

START RECORDING

Outline

Attendance quiz
Linked lists
Linked lists activities

Homework 5 check-In

Attendance Quiz

Attendance Quiz: Big Oh, Big Q, and Big ©

* Scan the QR code, or find today’s attendance
quiz under the “Quizzes” tab on Canvas

e Password: to be announced In class

Upper Bound Lower Bound Tight Bo

s n2... - 0(0) Q() O(

N C

...

Why use Linked Lists?

 Using an array, what is the time complexity of:

* Updating an element, given the index? O(1)
 Growing the length of the array? ©(n)
« Locating an element if the array isn’t sorted? O(n)
e Locating an element if the array is sorted? O(log(n))

 Can you think of a program where array length isn’t known ahead of time?

* Linked lists grow in constant-time (i.e., ©(1))

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

12 - Stacks and Quevues

e APls
e Clients

e Strawman implementation
e Linked lists

* Implementations

CS.12.D.StacksQueues.Lists

Data structures: sequential vs. linked

Array at CO Linked list at C4
Sequential data structure
. addr value addr value
e Put objects next to one another.
e Machine: consecutive memory cells. >C0 “Alice Co | “Carol
e Java: array of objects. C1 "Bob’ C1 null
e Fixed size, arbitrary access. «—— jth element C2 "Carol C2
C3 C3
C4 —_— (! "Alice”
Linked data structure C5S C5 CA —
e Associate with each object a link to another one. 6 6
e Machine: link is memory address of next object. - -
e Java: link is reference to next object. s s
e Variable size, sequential access. «<—— next element
. C9 C9
e Overlooked by novice programmers.
CA CA "Bob”

e Flexible, widely used method for organizing data.
CB CB CO

Simplest singly-linked data structure: linked list

Linked list
e A recursive data structure. orivate class Node
e Def. A linked list is null or a reference to a node. i . .
private String 1tem;
e Def. A node is a data type that contains a reference to a node. private Node next;
}

e Unwind recursion: A linked list is a sequence of nodes.

Representation
e Use a private nested class Node to implement the node abstraction.
e For simplicity, start with nodes having two values: a String and a Node.

A linked list

first — "Alice" e—— "Bob" e—— "Carol" c\

item next

null

Building a linked list

Node third = new Node();

third.1tem = "Carol"; addr value
th-| r'd. heXt = nu-l-l ; CO "CarOI"
Node second = new Node(); C1 null

second.item = "Bob"; C2

second.next = third;
| third CO <3

Ngde fjrst = new.Node(); C "Alice
first.item = "Alice";: second CA
first.next = second;

first C4

first \ second\ third \
"Alice" —— "Bob" —— "Carol" e CB CO

null

List processing code

Standard operations for processing data structured as a singly-linked list
e Add a node at the beginning.
e Remove and return the node at the beginning.
e Add a node at the end (requires a reference to the last node).
e Traverse the list (visit every node, in sequence).

An operation that calls for a doubly-linked list (slightly beyond our scope)
e Remove and return the node at the end.

List processing code: Remove and return the first item

Goal. Remove and return the first
item in a linked list f1rst.

_ _ _ 1tem
1tem = first.i1tem; .
Alice
1tem
first = first.next; "Alice"
1tem
return 1tem; "Alice"

first —> "Alice” o——

first —» "Alice” eo——

"Bob"”

lIBObII

e——> "Carol"

e——> 'Carol"

ﬁ'rst/\ "Bob" e—— "Carol" e
available for /

garbage collection

first —>»

"Bob"”

e——> 'Carol"

12

List processing code: Add a new node at the beginning

Goal. Add 1tem to a linked list first. tem
"Dave”

first —> "Alice"

second

N\

Node second = first; _ e
first —» "Alice

second

N\

first = new Node(); first —>» ° "Alice"

second

N\

first.item Firet "Dave" "Alice"”

first.next

1tem;
second;

*—>

o>

o>

o>

"Bob"”

lIBObII

IIBObII

"Bob"”

e——> 'Carol"

e——> 'Carol"

e——> '"Carol"

e——> 'Carol"

|3

List processing code: Add a new node at the end

Goal. Add item to the end of a linked list. 1tem
. : "Dave" last
Use and maintain a reference last \
to the last node. "Alice" e——> "Bob" e—— "Carol" e
1tem
"Dave" last
last.next = new Node(); | \
"Alice" e—> "Bob" e—> "Carol" e—— °
1tem
"Dave" -IaSt\
last = last.next; o))))
Alice" e—> "Bob o—> "Carol" eo— °
last

last.1tem = 1tem; "Alice" e——> "Bob" e—— "Carol" e—— "Dave" e

List processing code: Traverse a list

Goal. Visit every node on a linked list f1rst.

Node x = first;

-

X

while (x != null)
1 first E: "Alice” eo—
StdOut.println(x.1tem);
X = X.hext;
}
StdOut

"Bob"”

Alice
Bob
Carol

e——> "Carol"

|5

Pop quiz 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node 1list = null;
while (!StdIn.isEmpty())

{
Node old = 1list;
1ist = new Node();
lTist.item = StdIn.readStringQ;
list.next = old;
}

for (Node t = list; t != null; t = t.next)
StdOut.println(t.i1tem);

Pop quiz 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node 1ist = null; _
while (!StdIn.isEmpty()) hSt_/: or ‘ |
{ 1d

Node old = Tist; °

T1st = new Node(); _

list.1tem = StdIn.readString(); 1ist —>| not | °

Tist.next = old; /!
1 old
for (Node t = list; t != null; t = t.next)

StdOut.printin(t.item); list —>»| not | =—>

A: Prints the strings from StdIn on StdOut, in reverse order

Note: Better to use a stack (next lecture!)

Pop quiz 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node Tist = new Node();

Tist.1tem = StdIn.readString();
Node last = list;

while (1StdIn.isEmpty())

{

last.next = new Node();

last = last.next;

last.1tem = StdIn.readString();

Pop quiz 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node 1ist = new Node();
Tist.1tem = StdIn.readString();

Node last = list; last
while (!StdIn.isEmpty())
{ . ‘ ‘ E ‘ :

last.next = new Node(); st =>{ 1o be / o

last = last.next; last

last.1tem = StdIn.readString();
} .

list —> to |>—>»| be |~=—>| or |~—>| not |
/!
last

A: Puts the strings from StdIn on a linked list, in the order they are read (assuming at least one string).

Note: Better to use a gueue, in most applications (next lecture!)

N

In this course, we restrict use of linked lists to data-type implementations

public class IntLinkedList {

private class Node {
1nt val;
Node next;

}

public Node(int v) {
val = v;
next = null;

private Node head; // the first node and access point of the Tinked Tist
private int length; // number of nodes 1n the list

// constructor initializes an empty linked 1list
public IntLinkedList() {
head = null;

}

// TODO

//
//
//
//

OU
OU
DU

OUu

0

1C

JkKe
-
JhKe

1C

int length() { }

int get(int i) { }

void addFirst(int val) { }
void addLast(int val) { }

Linked List Activities

* |mplement length()

 Implement addFirst()

* Implement get()

 Implement addLast()

Invariants

* Properties that need to be maintained (e.g., of instance variables)

e For each method:

* Pre-conditions: what are assumed to be true at the beginning of the
method

* e.g. Instance variables, parameters, etc.
e Post-conditions: what should be true at the end of the method

e e.g. Instance variables, output, parameters, etc.

IntLinkedList Invariants

e |nstance variables:

* head: should always refer to the first node of the linked list, or null if the
list Is empty

* length: should always be the number of nodes in the list

Improve addLast()

e addLast() will be slow, if we must traverse the entire LinkedList each time
* Instead, we can simply keep track of the talil, in addition to the head

* Considering the invariants of our class will help us write bug-free code

IntLinkedList Invariants

e |nstance variables:

* head: should always refer to the first node of the linked list, or null if the
list is empty

 tail: should always refer to the last node of the linked list, or null if the
list is empty

* length: should always be the number of nodes in the list

Singly-linked data structures

Even with just one link ((O—) a wide variety of data structures are possible.

Linked list (this lecture) - g%
O—O—0—0—0—0 of L
4y

Circular list (TSP) General case ?

S C o
el

From the point of view of a particular object,

Multiply linked structures: many more possibilities! all of these structures look the same.

26

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART II: ALGORITHMS, THEORY, AND MACHINES

COMPUTER 12. Stacks and Queues
SCIENCE

. An In’rerdlsmpllnary Approach |

: h , ROBERT SEDGEWICK ,
:) , ¢ TN AYNE
Sectlon 4.3 CARE NI

http://introcs.cs.princeton.edu

http://introcs.cs.princeton.edu

Homework Check-in

