
Performance
CS 121: Data Structures

Putting Performance in Perspective
• When developing a program, always prioritize readability, correctness,

and maintainability

• Not all programs have strict performance constraints

• But if performance is important:

• Focus on big-picture issues throughout development (e.g., selection of
appropriate libraries, data structures, algorithms, etc.)

• Only spend time on small, tedious optimizations if benchmarking has
identified a particular area of code as performance-limiting

Big-Picture Performance Issue: Algorithms

• Recursion vs dynamic programming makes a big difference when
computing the Fibonacci sequence!

• Think about:

• Is your program performing the same calculation repeatedly?

• Is your program storing data it doesn’t need?

Big-Picture Performance Issue: Algorithms

public class FibonacciR {
 public static long F(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 StdOut.println(F(n));
 }
}

> time java-introcs FibonacciD 50
real 0m0.115s

public class FibonacciD {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 long[] F = new long[n + 1];
 F[0] = 0;
 F[1] = 1;
 for (int i = 2; i <= n; i++)
 F[i] = F[i - 1] + F[i - 2];
 StdOut.println(F[n]);
 }
}

FibonacciR.java FibonacciD.java

> time java-introcs FibonacciR 50
real 0m54.950s

~40 billion calls to F(), ~20 billion sums performed 51 sums performed

Big-Picture Performance Issue: Algorithms

> time java-introcs Fibonacci 50
real 0m0.100s

public class Fibonacci {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 long nMinus2 = 0; long nMinus1 = 1;
 long nMinus0 = 1;
 for (int i = 2; i <= n; i++) {
 nMinus0 = nMinus1 + nMinus2;
 nMinus2 = nMinus1; nMinus1 = nMinus0;
 }
 StdOut.println(nMinus0);
 }
}

Fibonacci.java

Note: To keep this program short, it doesn’t work for n=0

> time java-introcs FibonacciD 50
real 0m0.115s

public class FibonacciD {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 long[] F = new long[n + 1];
 F[0] = 0;
 F[1] = 1;
 for (int i = 2; i <= n; i++)
 F[i] = F[i - 1] + F[i - 2];
 StdOut.println(F[n]);
 }
}

FibonacciD.java

Big-Picture Performance Issue: Streaming Data

• Arbitrary-sized data should be processed incrementally, when possible

• If you try to store all data in memory at once, your program can easily run
out of memory!

Big-Picture Performance Issue: Streaming Data
Generate a 1 million line input file (~10MB)
> cat /dev/random | \
 LC_ALL=C tr -dc 'a-zA-Z0-9' | \
 fold -w 10 | \
 head -n 1000000 > 1m.txt

Processing the file line-by-line works great!
> java -Xmx32M Grep hello 1m.txt

We run out of memory if we use readAllLines()
> java -Xmx32M GrepAll hello 1m.txt
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
 at java.base/java.util.regex.Matcher.usePattern(Matcher.java:381)
 at java.base/java.util.Scanner.findPatternInBuffer(Scanner.java:1080)
 at java.base/java.util.Scanner.findWithinHorizon(Scanner.java:1791)
 at java.base/java.util.Scanner.hasNextLine(Scanner.java:1610)
 at In.hasNextLine(In.java:248)
 at In.readAllLines(In.java:528)
 at GrepAll.main(GrepAll.java:11)

Note: We limited Java to
32MB of memory with the
-Xmx32M argument.

Big-Picture Performance Issue:
Memory Impact of Language

• Python, Java, JavaScript, etc. use automatic “garbage collection” to
manage memory

• In contrast, C, C++, Objective-C, etc. are primarily used with manual
memory management

• Rust, Swift, etc. support something in between, that gives benefits of
both (e.g., automatic reference counting)

• Garbage collection requires more memory, and has performance
overhead. However, manual memory management requires more effort
from developers.

Big-Picture Performance Issue:
Memory Impact of Language

“These results quantify the time-space tradeoff of garbage collection: with
five times as much memory [garbage collection] matches the performance of
reachability-based explicit memory management. With only three times as
much memory, the collector runs on average 17% slower than explicit
memory management. However, with only twice as much memory, garbage
collection degrades performance by nearly 70%. When physical memory is
scarce, paging causes garbage collection to run an order of magnitude
slower than explicit memory management.”

Hertz, Matthew, and Emery D. Berger. "Quantifying the performance of garbage collection vs. explicit
memory management." Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. 2005.

Big-Picture Performance Issue:
Garbage Collection on Smartphones

• iOS apps are coded in Objective-C and Swift, and don’t use garbage collection

• Android apps are written in Java and Kotlin, and use garbage collection

• This means that Android phones need more RAM to give comparable
performance

Samsung Galaxy S22 Ultra 5G
8GB or 12GB of RAM

iPhone 14
6GB of RAM

Big-Picture Performance Issue:
Garbage Collection on the Desktop

• Visual Studio Code is written using the “Electron” framework, which includes a
customized Chrome web browser that runs code written in JavaScript
(JavaScript uses garbage collection)

• Writing “for the web” makes it easier to maintain VS Code on different
platforms

• However, Electron-based apps use much more memory than “native” apps
(e.g., Sublime Text, Notepad++, BBEdit, etc.). This is visible when trying to
open a large file in VS Code:

Memory usage with one small file open:
• Sublime Text: 67MB
• BBEdit: 121MB
• VS Code: 842MB
• IntelliJ: 1.17GB

Optimizing Matrix Multiplication

• In scientific computing, matrix multiplication is common

• How to perform matrix multiplication most efficiently?

• Subtle differences in implementation can have a large impact on
performance

Basic Matrix Multiplication
StopwatchCPU timer = new StopwatchCPU();
double[][] c = new double[N][N];
for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 for (int k = 0; k < N; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}
StdOut.printf("Multiplied in %.2f seconds\n",
 timer.elapsedTime());

> java-introcs MatrixMult 1000
Multiplied in 6.24 seconds

MatrixMult.java

Performance-Tuned Matrix Multiplication

StopwatchCPU timer = new StopwatchCPU();
double[][] c = new double[N][N];
for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 for (int k = 0; k < N; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}
StdOut.printf("Multiplied in %.2f seconds\n",
 timer.elapsedTime());

> java-introcs MatrixMultAlt 1000
Multiplied in 1.36 seconds

StopwatchCPU timer = new StopwatchCPU();
double[][] c = new double[N][N];
for (int i = 0; i < N; i++) {
 for (int k = 0; k < N; k++) {
 for (int j = 0; j < N; j++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}
StdOut.printf("Multiplied in %.2f seconds\n",
 timer.elapsedTime());

MatrixMult.java MatrixMultAlt.java

> java-introcs MatrixMult 1000
Multiplied in 6.24 seconds

Faster, but why? Will it always be faster?

Using a Linear Algebra Library
StopwatchCPU timer = new StopwatchCPU();
double[][] c = new double[N][N];
for (int i = 0; i < N; i++) {
 for (int k = 0; k < N; k++) {
 for (int j = 0; j < N; j++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
}
StdOut.printf("Multiplied in %.2f seconds\n",
 timer.elapsedTime());

> java MatrixMultJblas 1000
Multiplied in 0.21 seconds

// Initialize the matrices to random values
DoubleMatrix a = DoubleMatrix.randn(N, N);
DoubleMatrix b = DoubleMatrix.randn(N, N);

// Perform matrix multiplication
StopwatchCPU timer = new StopwatchCPU();
DoubleMatrix c = a.mmul(b);
StdOut.printf("Multiplied in %.2f seconds\n",
 timer.elapsedTime());

MatrixMultAlt.java MatrixMultJblas.java

> java-introcs MatrixMultAlt 1000
Multiplied in 1.36 seconds

Less code, and should consistently be faster.

Takeaways
• 97% of the time, you should think about performance at a high-level

• High-level, conceptual thinking will help you select the appropriate:

• Language

• Libraries

• Algorithms

• Data structures

• Don’t spend time on tedious performance tuning (e.g., swapping the order
of for-loops), unless you are creating a reusable, high-performance library!

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

7. Performance

Section 4.1

http://introcs.cs.princeton.edu

7. Performance

•The challenge
•Empirical analysis
•Mathematical models
•Doubling method
•Familiar examples

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.7.A.Performance.Challenge

19

The challenge (since the earliest days of computing machines)

Difference Engine #2

Designed by Charles
Babbage, c. 1848

Built by London Science
Museum, 1991

“ As soon as an Analytic Engine exists, it will necessarily guide the future course of the
science. Whenever any result is sought by its aid, the question will arise—By what
course of calculation can these results be arrived at by the machine in the shortest time?”

− Charles Babbage

Q. How many times do you
 have to turn the crank?

The challenge (modern version)

20

Q. Will I be able to use my program to solve a large practical problem?

Key insight (Knuth 1970s). Use the scientific method to understand performance.

Q. If not, how might I understand its performance characteristics so as to improve it?

21

Three reasons to study program performance

2. To compare algorithms and implementations.

• Will this change make my program faster?

• How can I make my program faster?

3. To develop a basis for understanding the
problem and for designing new algorithms

• Enables new technology.

• Enables new research.

1. To predict program behavior

• Will my program finish?

• When will my program finish?

public class Gambler
{
 public static void main(String[] args)
 {
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int trials = Integer.parseInt(args[2]);
 int wins = 0;
 for (int t = 0; t < trials; t++)
 {
 int cash = stake;
 while (cash > 0 && cash < goal)
 if (Math.random() < 0.5) cash++;
 else cash--;
 if (cash == goal) wins++;
 }
 StdOut.print(wins + " wins of " + trials);
 }
}

An algorithm is a method for
solving a problem that is

suitable for implementation as
a computer program.

We study several algorithms later in this course.
Taking more CS courses? You'll learn dozens of algorithms.

An algorithm design success story

N-body simulation

• Goal: Simulate gravitational interactions among N bodies.

• Brute-force algorithm uses N 2 steps per time unit.

• Issue (1970s): Too slow to address scientific problems of interest.

• Success story: Barnes-Hut algorithm uses N logN steps and enables new research.

22

problem size (N)

ti
m

e

N 2

N logN

limit on available time

Andrew Appel
PU '81

senior thesis

Another algorithm design success story

Discrete Fourier transform

• Goal: Break down waveform of N samples into periodic components.

• Applications: digital signal processing, spectroscopy, ...

• Brute-force algorithm uses N 2 steps.

• Issue (1950s): Too slow to address commercial applications of interest.

• Success story: FFT algorithm uses N logN steps and enables new technology.

23

problem size (N)

ti
m

e

N 2

N logN

limit on available time

John Tukey
1915–2000

Quick aside: binary logarithms

24

Def. The binary logarithm of a number N (written lg N)
 is the number x satisfying 2x = N.

N approximate value lgN log10N

210 1 thousand 10 3.01

220 1 million 20 6.02

230 1 billion 30 9.03

Frequently encountered values

Fact. The number of bits in the binary representation of N is 1+⎣lg N⎦.

Q. How many recursive calls for convert(N)?

Fact. Binary logarithms arise in the study of algorithms based on recursively solving problems
 half the size (divide-and-conquer algorithms), like convert, FFT and Barnes-Hut.

A. Largest integer less than or equal to lg N (written ⎣lg N⎦).

public static String convert(int N)
{
 if (N == 1) return "1";
 return convert(N/2) + (N % 2);
}

N

lg
 N

1 2 4 8 16

2

4

0
1

3

Prove by induction.
Details in "sorting and searching" lecture.

or log2N

An algorithmic challenge: 3-sum problem

Three-sum. Given N integers, enumerate the triples that sum to 0.

25

Q. Can we solve this problem for N = 1 million?

Applications in computational geometry

• Find collinear points.

• Does one polygon fit inside another?

• Robot motion planning.

• [a surprisingly long list]

For simplicity, just count them.

public class ThreeSum
{
 public static int count(int[] a)
 { /* See next slide. */ }

 public static void main(String[] args)
 {
 int[] a = StdIn.readAllInts();
 StdOut.println(count(a));
 }
}

% more 6ints.txt
30 -30 -20 -10 40 0

% java ThreeSum < 6ints.txt
3

30 -30 0
30 -20 -10
-30 -10 40

✗

✗

✓

26

Three-sum implementation

"Brute force" algorithm

• Process all possible triples.

• Increment counter when sum is 0.

public static int count(int[] a)
{
 int N = a.length;
 int cnt = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 cnt++;
 return cnt;
}

i j k a[i] a[j] a[k]

0 1 2 30 -30 -20

0 1 3 30 -30 -10

0 1 4 30 -30 40

0 1 5 30 -30 0

0 2 3 30 -20 -10

0 2 4 30 -20 40

0 2 5 30 -20 0

0 3 4 30 -10 40

0 3 5 30 -10 0

0 4 5 30 40 0

1 2 3 -30 -20 -10

1 2 4 -30 -20 40

1 2 5 -30 -20 0

1 3 4 -30 -10 40

1 3 5 -30 -10 0

1 4 5 -30 40 0

2 3 4 -20 -10 40

2 3 5 -20 -10 0

2 4 5 -20 40 0

3 4 5 -10 40 0

i 0 1 2 3 4 5

a[i] 30 -30 -20 -10 40 0

Q. How much time will this program take for N = 1 million?

Keep i < j < k to
avoid processing

each triple 6 times

�
5
�

�
triples

with i < j < k

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg

 http://commons.wikimedia.org/wiki/File:Charles_Babbage_1860.jpg

 http://commons.wikimedia.org/wiki/File:John_Tukey.jpg

 http://commons.wikimedia.org/wiki/File:Andrew_Apple_(FloC_2006).jpg

 http://commons.wikimedia.org/wiki/File:Hubble's_Wide_View_of_'Mystic_Mountain'_in_Infrared.jpg

CS.7.A.Performance.Challenge

http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/

7. Performance

•The challenge
•Empirical analysis
•Mathematical models
•Doubling method
•Familiar examples

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.7.B.Performance.Empirical

A first step in analyzing running time

Find representative inputs

• Option 1: Collect actual input data.

• Option 2: Write a program to generate representative inputs.

29

public class Generator
{ // Generate N integers in [-M, M)
 public static void main(String[] args)
 {
 int M = Integer.parseInt(args[0]);
 int N = Integer.parseInt(args[1]);
 for (int i = 0; i < N; i++)
 StdOut.println(StdRandom.uniform(-M, M));
 }
}

Input generator for ThreeSum % java Generator 1000000 10
28773
-807569
-425582
594752
600579
-483784
-861312
-690436
-732636
360294

% java Generator 10 10
-2
1
-4
1
-2
-10
-4
1
0
-7

not much chance
of a 3-sum

good chance
of a 3-sum

Empirical analysis

Run experiments

• Start with a moderate input size N.

• Measure and record running time.

• Double input size N.

• Repeat.

• Tabulate and plot results.

30

% java Generator 1000000 1000 | java ThreeSum
59 (0 seconds)

% java Generator 1000000 2000 | java ThreeSum
522 (4 seconds)

% java Generator 1000000 4000 | java ThreeSum
3992 (31 seconds)

% java Generator 1000000 8000 | java ThreeSum
31903 (248 seconds)

Run experiments

Tabulate and plot results

problem size (N)

ti
m

e
(s

ec
on

ds
)

0 1000 2000 4000 8000

100

0

200

250
N time (seconds)

1000 0

2000 4

4000 31

8000 248

Measure running time

double start = System.currentTimeMillis() / 1000.0;
int cnt = count(a);
double now = System.currentTimeMillis() / 1000.0;
StdOut.printf("%d (%.0f seconds)\n", cnt, now - start);

Replace println() in ThreeSum
with this code.

Aside: experimentation in CS
is virtually free, particularly by comparison with other sciences.

31

Bottom line. No excuse for not running experiments to understand costs.

Physics

Chemistry

one experiment

Computer Science

one million experiments

Do the math

Data analysis

Curve fitting

• Plot on log-log scale.

• If points are on a straight line (often the case), a
power law holds—a curve of the form aNb fits.

• The exponent b is the slope of the line.

• Solve for a with the data.

32

N TN lgN lg TN

1000 0.5 10 −1

2000 4 11 2

4000 31 12 5

8000 248 13 8

log problem size (lg N)

lo
g

ti
m

e
(lg

 T
N
)

10 11 12 13

2

−1

8

log-log plot

5
TN = aN3 raise 2 to a power of both sides

248 = a × 80003 substitute values from experiment

a = 4.84 × 10 −10 solve for a

4.84 × 10 −10 × N3

0.5

4

31

248

straight line
of slope 3

✓

 lgTN = lga + 3lgN equation for straight line of slope 3

x-intercept (use lg in anticipation of next step)

TN = 4.84 × 10 −10 × N3 substitute

a curve that fits the data ?

Prediction. Running time for N = 16,000 will be 1982 seconds.

Prediction and verification

Hypothesis. Running time of ThreeSum is 4.84 × 10 −10 × N 3.

33

✓% java Generator 1000000 16000 | java ThreeSum
31903 (1985 seconds)

Q. How much time will this program take for N = 1 million?

A. 484 million seconds (more than 15 years).

about half an hour

Another hypothesis

34

Hypothesis. Running times on different computers differ by only a constant factor.

0 1000 2000 4000 8000

100

0

200

250
N time (seconds)

1000 0
2000 4
4000 31
8000 248

4.84 × 10 −10 × N3 seconds

2010s: 10,000+ times faster

Macbook Air

0 1000 2000 4000 8000

1000000

0

N time (seconds)
1000 5319
2000 43221
4000 343774
8000 2654384

5.2 × 10 −6 × N3 seconds

VAX 11/780

1970s

2000000

(estimated)

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://commons.wikimedia.org/wiki/File:FEMA_-_2720_-_Photograph_by_FEMA_News_Photo.jpg

 http://pixabay.com/en/lab-research-chemistry-test-217041/

 http://upload.wikimedia.org/wikipedia/commons/2/28/Cut_rat_2.jpg

 http://pixabay.com/en/view-glass-future-crystal-ball-32381/

CS.7.B.Performance.Empirical

http://commons.wikimedia.org/wiki/
http://pixabay.com/en/lab-research-chemistry-test-217041/

