Performance

CS 121: Data Structures

Putting Performance In Perspective

 When developing a program, always prioritize readability, correctness,
and maintainability

* Not all programs have strict performance constraints
o But If performance is important:

 Focus on big-picture issues throughout development (e.g., selection of
appropriate libraries, data structures, algorithms, etc.)

* Only spend time on small, tedious optimizations if benchmarking has
identified a particular area of code as performance-limiting

Big-Picture Performance Issue: Algorithms

* Recursion vs dynamic programming makes a big difference when
computing the Fibonacci sequence!

* Think about:
e |s your program performing the same calculation repeatedly?

* |s your program storing data it doesn’t need?

Big-Picture Performance Issue: Algorithms

FibonacciR.java FibonacciD.java
public class FibonacciR { public class FibonacciD {
public static long F(int n) { public static void main(String[] args) {
1f (n == 0) return O; 1int n = Integer.parselnt(args[0]);
if (n == 1) return 1; long[] F = new Tong[n + 1];
return F(n-1) + F(n-2); FIO] = O;
} F[1] = 1;
public static void main(String[] args) { for (int i = 2; i <= n; i++)
int n = Integer.parselInt(args[0]); F[1] = F[1 - 1] + F[1 - 2];
StdOut.printin(F(n)); StdOut.printin(F[n]);
} }
} }
> time java-introcs FibonacciR 50 > time java-introcs FibonacciD 50
real Om54.950s real Om0.115s

~40 billion calls to F(), ~20 billion sums performed 51 sums performed

Big-Picture Performance Issue: Algorithms

FibonacciD.java

public class FibonacciD {
public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
long[] F = new long[n + 1];
F[O] = O;
F[1] = 1;
for (Aint 1 = 2; 1 <= n; 1++)
F[i] = F[1 - 1] + F[1 - 2];

StdOut.println(F[n]);

> time java-introcs FibonacciD 50
real Om0.115s

pub

Fibonacci.java

1c class Fibonacci {

public static void main(String[] args) {

int n = Integer.parselnt(args[0]);
long nMinus2 = 0; long nMinusl = 1;
long NnMinusO = 1;
for (int 1 = 2; 1 <= n; 1++) {
NM1nusO = nMinusl + nMinus?2;
NMinus2 = nMinusl; nMinusl = nMinusO;

¥
StdOut.println(nMinusO0);

> time java-introcs Fibonacci 50

real

Om0.100s

Note:

0 keep this program short, it doesn’t work for n=0

Big-Picture Performance Issue: Streaming Data

* Arbitrary-sized data should be processed incrementally, when possible

* |f you try to store all data in memory at once, your program can easily run
out of memory!

Big-Picture Performance Issue: Streaming Data

Generate a 1 million line 1nput file (~10MB)

> cat /dev/random | \
LC_ALL=C tr -dc 'a-zA-Z0-9'

fold -w 10 | \
head -n 1000000 > 1m.txt

|\

Processing the file 1line-by-1ine works great!
> java -Xmx32M Grep hello 1m.txt

We run out of memory 1f we use readAllLines()

> java -Xmx32M GrepAll hello 1m.txt

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
' ava.]
ava.
ava.

at
at
at
at
at
at
at

-

-

-

java.
java.
java.
java.

pase/]
pase/]
pase/]

- pase/]
In.hasNextLine(In.

dvd

uti

uti|
uti|
uti|

.regex.Matcher.usePattern(Matcher.java:381)
.Scanner.findPatternInBuffer(Scanner.java:1080)
.Scanner.findWithinHorizon(Scanner.java:1791)
.Scanner.hasNextLine(Scanner.java:1610)

java:248)

In.readAll1Lines(In.java:528)
GrepAll.main(GrepAll.java:11)

Note: We limited Java to
32MB of memory with the
-Xmx32M argument.

Big-Picture Performance Issue:
Memory Impact of Language

* Python, Java, JavaScript, etc. use automatic “garbage collection” to
manage memory

* |n contrast, C, C++, Objective-C, etc. are primarily used with manual
memory management

* Rust, Swift, etc. support something in between, that gives benefits of
both (e.g., automatic reference counting)

 (Garbage collection requires more memory, and has performance
overhead. However, manual memory management requires more effort
from developers.

Big-Picture Performance Issue:
Memory Impact of Language

“These results quantify the time-space tradeoff of garbage collection: with
five times as much memory [garbage collection] matches the performance of
reachabllity-based explicit memory management. With only three times as
much memory, the collector runs on average 17% slower than explicit
memory management. However, with only twice as much memory, garbage
collection degrades performance by nearly 70%. When physical memory is
scarce, paging causes garbage collection to run an order of magnitude
slower than explicit memory management.”

Hertz, Matthew, and Emery D. Berger. "Quantifying the performance of garbage collection vs. explicit
memory management." Proceedings of the 20th annual ACM SIGPLAN conference on Obiject-
oriented programming, systems, languages, and applications. 2005.

Big-Picture Performance Issue:
Garbage Collection on Smartphones

e |OS apps are coded in Objective-C and Swift, and don’t use garbage collection

 Android apps are written in Java and Kotlin, and use garbage collection

* This means that Android phones need more RAM to give comparable
performance

Ro6 e Samsung Galaxy S22 Ultra 5G
8GB or 12GB of RAM

IPhone 14
6GB of RAM

Big-Picture Performance Issue:
Garbage Collection on the Desktop

* Visual Studio Code is written using the “Electron” framework, which includes a
customized Chrome web browser that runs code written in JavaScript
(JavaScript uses garbage collection)

* Writing “for the web” makes it easier to maintain VS Code on different
platforms

» However, Electron-based apps use much more memory than “native” apps
(e.g., Sublime Text, Notepad++, BBEdIt, etc.). This is visible when trying to

open a large file in VS Code:

@ 1m.txt: tokenization, wrapping and folding have been turned off X MemOry Usage with one small f||e Openi

for this large file in order to reduce memory usage and avoid ° Subllme Text: 67MB
freezing or crashing. « BBEdit: 121 MB

VS Code: 84208
* Intellid: 1.17GB

Optimizing Matrix Multiplication

* |n scientific computing, matrix multiplication is common
 How to perform matrix multiplication most efficiently?

e Subtle differences in implementation can have a large impact on
performance

Basic Matrix Multiplication

MatrixMult.java

StopwatchCPU timer = new StopwatchCPUQ);
double[][] ¢ = new double[N][N];
for (int 1 =0; 1 < N; 1++) {
for (int j = 0; j < N; j++) {
for (int k = 0; k < N; k++) {
cli11l3] += al[1]1[k] * b[kI[]];
}
}

¥
StdOut.printf("Multiplied in %.2f seconds\n",

timer.elapsedTime());

> java-introcs MatrixMult 1000
Multiplied 1n 6.24 seconds

Performance-Tuned Matrix Multiplication

MatrixMult.java

StopwatchCPU timer = new StopwatchCPUQ);
double[][] ¢ = new double[N][N];
for (int 1 =0; 1 < N; 1++) {
for (int j = 0; j < N; j++) {
for (int k = 0; k < N; k++) {
c[11[3] += al1][k] * b[kI[]]1;
}
}

¥
StdOut.printf("Multiplied in %.2f seconds\n",

timer.elapsedTime());

> java-introcs MatrixMult 1000
Multiplied 1n 6.24 seconds

MatrixMultAlt.java

StopwatchCPU timer = new StopwatchCPUQ);
double[][] ¢ = new double[N][N];
for (int 1 = 0; 1 < N; 1++) {
for (Aint k = 0; k < N; k++) {
for (int j = 0; j < N; j++) {
cf1][3] += al1][k] * b[k]I[j]1;
}
}

¥
StdOut.printf("Multiplied 1n %.2f seconds\n",

timer.elapsedTime());

> java-introcs MatrixMultAlt 1000
Multiplied 1n 1.36 seconds

Faster, but why? Will it always be faster?

Using a Linear Algebra Library

MatrixMultAlt.java MatrixMultdblas.java
StopwatchCPU timer = new StopwatchCPUQ);
double[][] ¢ = new double[N][N]; // Initialize the matrices to random values
for (int 1 = 0; 1 < N; 1++) { DoubleMatrix a = DoubleMatrix.randn(N, N);
for (int k = 0; k < N; k++) { DoubleMatrix b = DoubleMatrix.randn(N, N);
for (int J = 0; j < N; j++) {
c[1][j] += al1]l[k] * b[k][]]; // Perform matrix multiplication
} StopwatchCPU timer = new StopwatchCPU();
} DoubleMatrix c = a.mmul(b);
} StdOut.printf("Multiplied 1n %.2f seconds\n",
StdOut.printf("Multiplied 1n %.2f seconds\n", timer.elapsedTime());
timer.elapsedTime());

> java-introcs MatrixMultAlt 1000 > java MatrixMultJblas 1000
Multiplied 1n 1.36 seconds Multiplied 1n 0.21 seconds

Less code, and should consistently be faster.

Takeaways

 97% of the time, you should think about performance at a high-level
* High-level, conceptual thinking will help you select the appropriate:
 Language
* Libraries
e Algorithms

e Data structures

 Don’t spend time on tedious performance tuning (e.g., swapping the order
of for-loops), unless you are creating a reusable, high-performance library!

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

C§MPUTER /. Performance
CIENCE

. An In’rerdlsmpllnary Approach |

’ , : ROBERT SEDGEWICK ,
= : KEVIN WAYNE
Sectlon 4.1 ~

http://introcs.cs.princeton.edu

http://introcs.cs.princeton.edu

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

7. Performance

* The challenge

* Empirical analysis

* Mathematical models
* Doubling method

* Familiar examples

CS.7.A.Performance.Challenge

The challenge (since the earliest days of computing machines)

“As soon as an Analytic Engine exists, it will necessarily guide the future course of the
science. Whenever any result is sought by its aid, the question will arise —By what
course of calculation can these results be arrived at by the machine in the shortest time?”

_ Charles Babbage!

Difference Engine #?2 _
Q. How many times do you

Designed by Charles
have to turn the crank?

Babbage, c. 1848

Built by London Science
Museum, 1991

19

The challenge (modern version)

Q. Will | be able to use my program to solve a large practical problem?

Review: program development in the real world

A four-step process, with feedback.

—

EDIT your program. /

l

syntax error

: runtime error
COMPILE your program to create an executable file. o |

1 semantic error

RUN your program to test that it works as you imagined. j

l performance error ?

TEST your program on realistic and real input data. __/

k »{ USE your program to solve a practical problem.

Q. If not, how might | understand its performance characteristics so as to improve it?

Key insight (Knuth 1970s). Use the scientific method to understand performance.

20

Three reasons to study program performance

1. To predict program behavior
e Will my program finish?
e When will my program finish?

2. To compare algorithms and implementations.

e Will this change make my program faster?
e How can | make my program faster?

3. To develop a basis for understanding the
problem and for designing new algorithms

e Enables new technology.

e Fnables new research.

public class Gambler

{
public static void main(String[] args)
{
int stake = Integer.parselInt(args[0]);
int goal = Integer.parselnt(args([1l]);
int trials = Integer.parselInt(args([2]);
1nt wins = 0;
for (int t = 0; t < trials; t++)
{
1nt cash = stake;
while (cash > 0 && cash < goal)
1t (Math.random() < 0.5) cash++;
else cash--;
1f (cash == goal) wins++;
}

StdOut.print(wins + " wins of " + trials);

An algorithm is a method for
solving a problem that is
suitable for implementation as
a computer program.

ity
|||I Iy I
Algorithms

--------------- | kevin warws

We study several algorithms later in this course.

Taking more CS courses? You'll learn dozens of algorithmes.

21

An algorithm design success story

N-body simulation
e Goal: Simulate gravitational interactions among N bodies.
e Brute-force algorithm uses N2 steps per time unit.
e Issue (1970s): Too slow to address scientific problems of interest.

e Success story: Barnes-Hut algorithm uses NlogN steps and enables new research. Andrew Appel

PU '81
senior thesis

N 2

time

limit on available time

NlogN

problem size (N)

22

Another algorithm design success story

Discrete Fourier transform
e Goal: Break down waveform of N samples into periodic components.
e Applications: digital signal processing, spectroscopy, ...
e Brute-force algorithm uses N2 steps.

e Issue (1950s): Too slow to address commercial applications of interest. Jghﬁ Tukey

* Success story: FFT algorithm uses NlogN steps and enables new technology. 191>me0m0

N 2

time

limit on available time

NlogN

problem size (N)

23

Quick aside: binary logarithms

Def. The binary logarithm of a number N (written Ig N) =
is the number x satisfying 2x= N. T

it r 11

or logzN

Q. How many recursive calls for convert(N)?
Frequently encountered values

pubTic static String convert(int N) N approximate value 1gN logioN
i 210 1 thousand 10 3.01
1f (N == 1) return "1";
return convert(N/2) + (N % 2): 220 1 million 20 6.02
J 230 1 billion 30 9.03

Prove by induction.
Details in "sorting and searching” lecture.

A. Largest integer less than or equal to lg N (written [lg NJ). «—

Fact. The number of bits in the binary representation of Nis 1+ [lg N .

Fact. Binary logarithms arise in the study of algorithms based on recursively solving problems
half the size (divide-and-conquer algorithms), like convert, FFT and Barnes-Hut.

24

An algorithmic challenge: 3-sum problem

Three-sum. Given N integers, enumerate the triples that sum to O.

AN

For simplicity, just count them.

public class ThreeSum

t _ . _ Applications in computational geometry
public static 1nt count(int[] a)

* Find collinear points.

oublic static void main(String[] args) « Does one polygon fit inside another?
{ . . .
int[] a = StdIn.readAl1IntsQ); Robot motion planning.
StdOut.printin(count(a)); .
}
}
% more 61nts.txt - X

30 -30 -20 -10 40 O

% java ThreeSum < 61nts.txt 30 -30 0 X
3 < 30 -20 -10
-30 -10 40

Q. Can we solve this problem for N= 1 million? v/

25

Three-sum implementation

"Brute force" algorithm

. . i 0o 1 2 3 4
e Process all possible triples.

e I[Increment counter when sum is O.

public static int count(int[] a) _ _
g Keep 1 < J < k to

avoid processing

int N = a.length; . .
int cnt = 0 each triple 6 times
for (int 1 = 0; 1 < N; 1++)

for (Aint J = 1+1; J < N; J++)
for (Aint k = j+1; k < N; k++)

1t (a[1] + al[j] + alk] == 0) N\
Cnt++: (B)tanS
return cnt; with 1 < J < k

Q. How much time will this program take for N= 1 million?

5

al[1] 30 -30 -20 -10 40 O

w N NN N

w b W W

al1] alj] alkl

30 -30 0
30 -20 -10

k
2
3
4
5
3
4
5
4
5
5
3
4
5
4 -30 -10 40
5

5

4

5

5

5

26

Image sources

http://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg
http://commons.wikimedia.org/wiki/File:Charles_Babbage_1860.jpg
http://commons.wikimedia.org/wiki/File:John_Tukey. jpg
http://commons.wikimedia.org/wiki/File:Andrew_Apple_(F1oC_2006).7jpg
http://commons.wikimedia.org/wiki/File:Hubble's _Wide_View_of_'Mystic_Mountain'_in_Infrared.jpg

CS.7.A.Performance.Challenge

http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/
http://commons.wikimedia.org/wiki/

COMPUTER SCIENCE

SEDGEWICK/WAYNE
PART I: PROGRAMMING IN JAVA

7. Performance

* The challenge

* Empirical analysis

* Mathematical models
* Doubling method

* Familiar examples

CS.7.B.Performance.Empirical

A first step in analyzing running time

Find representative inputs
e Option 1: Collect actual input data.

e Option 2: Write a program to generate representative inputs.

Input generator for ThreeSum

public class Generator

{
public static void main(String[] args)
{
int M = Integer.parselnt(args[0]);
int N = Integer.parselInt(args[1]);
for (Aint 1 = 0; 1 < N; 1++)
StdOut.printin(StdRandom.uniform(-M, M));
}
}

% java Generator 1000000 10

28773
-807569
-425582
594752
600579
-483784
-861312
-690436
-732636
360294

% java Generator 10 10

I

not much chance
of a 3-sum

1

good chance
of a 3-sum

29

Empirical analysis

Run experiments

e Start with a moderate input size N.

e Measure and record running time.

e Double input size N.
e Repeat.
e Tabulate and plot results.

Run experiments

% java Generator 1000000 1000 |
59 (0 seconds)

% java Generator 1000000 2000 |
522 (4 seconds)

% java Generator 1000000 4000 |
3992 (31 seconds)

% java Generator 1000000 8000 |
31903 (248 seconds)

java ThreeSum

java ThreeSum

java ThreeSum

java ThreeSum

Replace println() in ThreeSum
Measure running time / with this code.

double start = System.currentTimeMillis() / 1000.0;

int cnt = count(a);

double now = System.currentTimeMillis() / 1000.0;
StdOut.printf("%d (%.0f seconds)\n", cnt, now - start);

Tabulate and plot results

N time (seconds)
- 1000 0
= 2000 4
T —
S 4000 31
@)
n 8000 248
- —
E

problem size (N)

30

Aside: experimentation in CS

is virtually free, particularly by comparison with other sciences.

one m||||0n experiments —_—) % java SelfAvoidingWalker 10 100000
5% dead ends

% java SelfAvoidingwWalker 20 100000
32% dead ends

% java SelfAvoidingWalker 30 100000
58% dead ends

% java SelfAvoidingWalker 40 100000
77% dead ends

% java SelfAvoidingWalker 50 100000
87% dead ends

. % java SelfAvoidingwWalker 60 100000
onhe experiment 93% dead ends

l' % java SelfAvoidingwWalker 70 100000

| ~.300w
wm |
St ot IO.: 1o
I ﬁ \ ;:\ s !'. >

¥ ad -
N2
|20 B

) .
\

96% dead ends

% java SelfAvoidingWalker 80 100000
98% dead ends

% java SelfAvoidingWalker 90 100000
99% dead ends

% java SelfAvoidingWalker 100 100000
99% dead ends

Chemistry

100%

Q
©
(-]

o

75%

50%

25%

0%
10 20 30 40 50 60 70 80 90 100

Computer Science

Bottom line. No excuse for not running experiments to understand costs.

Data analysis

Curve fitting N Tw IgN IgTn 4.84x 10-10x N3
e Plot on log-log scale. 1000 05 | 10 | _ 0.5
e If points are on a straight line (often the case), a 5000 , o , .
power law holds—a curve of the form aN? fits.
. . 4000 31 12 5 31
e The exponent b is the slope of the line.
e Solve for a with the data. 8000 | 248 | 13 8 248
v
g-log plot Do the math x-intercept (use Ig in anticipation of next step)

lo

log time (Ig Tn)

: -~

IgTn=Ilga + 3lgN

straight line In=aN>
_ of slope 3 248 = g x 80003
a=4.84x10-10

ITnN=4.84x10"10x N3

|

log problem size (Ig N) a curve that fits the data ?

equation for straight line of slope 3

raise 2 to a power of both sides

substitute values from experiment

solve for a

substitute

32

Prediction and verification

Hypothesis. Running time of ThreeSum is 4.84 x 1010 x N3,

Prediction. Running time for N= 16,000 will be 1982 seconds.

1

about half an hour

D

% java Generator 1000000 16000 | java ThreeSum
31903 (1985 seconds)

Q. How much time will this program take for N= 1 million?

8 O 0 —— 484 million seconds in years - Google Search - m‘—
A_ 484 mIIIIOn Seconds (more than] 5 yearS)- |4 > ||| |2 | Q hips @ 484 million seconds in years ¢ | Reader | O |
GO SIQ 484 million seconds in years “
Time =
484000000 = 15.3374

4

Second — Year

33

Another hypothesis

1970s 5.2 x 10 © x N3 seconds

N time (seconds)
- 1000 5319
2000 43221

4000 343774
8000 2654384

(estimated)

VAX 11/780 4.84 x 1010 x N3 seconds

N time (seconds)
- 1000 0
2000 4

4000 31
8000

Macbook Air -

Hypothesis. Running times on different computers differ by only a constant factor.
34

Image sources

http://commons.wikimedia.org/wiki/File:FEMA_-_2720_-_Photograph_by_ FEMA_News_Photo. jpg
http://pixabay.com/en/lab-research-chemistry-test-217041/
http://upload.wikimedia.org/wikipedia/commons/2/28/Cut_rat_2.7jpg
http://pixabay.com/en/view-glass-future-crystal-ball-32381/

CS.7.B.Performance.Empirical

http://commons.wikimedia.org/wiki/
http://pixabay.com/en/lab-research-chemistry-test-217041/

