
Using Abstract Data Types
(ADTs)

CS 121: Data Structures

START RECORDING

Outline
• Attendance quiz

• Review lab

• Overview of Abstract Data Types (ADTs)

• Color

• Image processing

• String processing

Attendance Quiz

Attendance Quiz: Dynamic Programming
• Complete the assignment on paper,

then upload a photo to the quiz on
Canvas

• Password: to be announced in class

• Fill in the 2D array below, based on the
coin change rules:

c(i, j) =

0 if j = 0
j

d1
if i = 1

∞ if j < 0

min(c(i − 1,j),1 + c(i, j − di)) otherwise

i di 0 1 2 3 4 5

1 uno=1

2 dos=2

3 cuatro=4

Total amount of change (j)

Maximum
allowed coin

value (i)

Review Tracing Programs Lab

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

8. Abstract Data Types

Section 3.1

http://introcs.cs.princeton.edu

8. Abstract Data Types

•Overview
•Color
•Image processing
•String processing

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.8.A.ADTs.Overview

Abstract data types

9

Primitive types

• values immediately map to
machine representations

• operations immediately map to
machine instructions.

A data type is a set of values and a set of operations on those values.

An abstract data type is a data type whose representation is hidden from the client.

We want to write programs that process
other types of data.

• Colors, pictures, strings,

• Complex numbers, vectors, matrices,

• ...

Object-oriented programming (OOP)

10

Object-oriented programming (OOP).

• Create your own data types.

• Use them in your programs (manipulate objects).

Best practice: Use abstract data types (representation is hidden from the client).

Impact: Clients can use ADTs without knowing implementation details.

• This lecture: how to write client programs for several useful ADTs

• Next lecture: how to implement your own ADTs

data type set of values examples of operations

Color three 8-bit integers get red component, brighten

Picture 2D array of colors get/set color of pixel (i, j)

String sequence of characters length, substring, compare

An object holds a data type value.
Variable names refer to objects.

Examples (stay tuned for details)

C A T A G C G C

Strings

11

public class String

 String(String s) create a string with the same value

 int length() string length

 char charAt(int i) ith character

 String substring(int i, int j) ith through (j-1)st characters

boolean contains(String sub) does string contain sub?

boolean startsWith(String pre) does string start with pre?

Operations (API)

Java's String ADT allows us to write Java programs that manipulate strings.
The exact representation is hidden (it could change and our programs would still work).

A String is a sequence of Unicode characters. defined in terms of its ADT values (typical)

stay tuned for more complete API later in this lecture

We have already been using ADTs!

The “In” library

12

public class In

 In() Initialize input from STDIN

 In(File file) Initialize input from file object

 In(String name) Initialize input from filename

boolean isEmpty() True if input stream is empty

 String readLine() Read next line from input stream

 int readInt() Read next integer from input stream

 double readDouble() Read next double from input stream

Operations (API)

We can read from STDIN or from files.
The exact representation is hidden (it could change and our programs would still work).

A In object represents an input stream of textual data.

We have already been using ADTs!

Using a data type: constructors and methods

13

To use a data type, you need to know:

• Its name (capitalized, in Java).

• How to construct new objects.

• How to apply operations to a given object.

To construct a new object

• Use the keyword new to invoke a constructor.

• Use data type name to specify type of object.

To apply an operation (invoke a method)

• Use object name to specify which object.

• Use the dot operator to indicate that an
operation is to be applied.

• Use a method name to specify which operation.

String s;

s = new String ("Hello, World");

StdOut.println(s.substring(0, 5));

new Building()

14

Pop quiz on ADTs

Q. What is an abstract data type?

Q. What is a data type?

A. A set of values and a set of operations on those values.

15

Pop quiz on ADTs

Q. What is an abstract data type?

Q. What is a data type?

A. A set of values and a set of operations on those values.

A. A data type whose representation is hidden from the client.

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://upload.wikimedia.org/wikipedia/commons/6/6a/

 Construction_Site_for_The_Oaks_High_School_Retford_-_geograph.org.uk_-_89555.jpg

CS.8.A.ADTs.Overview

9. Abstract Data Types

•Overview
•Color
•Image processing
•String processing

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.8.B.ADTs.Color

Color ADT

18

public class Color

 Color(int r, int g, int b)

 int getRed() red intensity

 int getGreen() green intensity

 int getBlue() blue intensity

 Color brighter() brighter version of this color

 Color darker() darker version of this color

 String toString() string representation of this color

boolean equals(Color c) is this color the same as c's ?

examples

R (8 bits) red intensity 255 0 0 0 255 0 119 105

G (8 bits) green intensity 0 255 0 0 255 64 33 105

B (8 bits) blue intensity 0 0 255 0 255 128 27 105

color

API (operations)

Values

An ADT allows us to write Java
programs that manipulate color.

Color is a sensation in the eye
from electromagnetic radiation.

Albers squares

19

Josef Albers. A 20th century artist who revolutionized the way people think about color.

Josef Albers 1888−1976

Color client example: Albers squares

20

Goal. Write a Java program to generate Albers squares.

% java AlbersSquares 0 64 128 105 105 105

% java AlbersSquares 251 112 34 177 153 71

% java AlbersSquares 28 183 122 15 117 123

21

Color client example: Albers squares

public class AlbersSquares
{
 public static void main(String[] args)
 {
 int r1 = Integer.parseInt(args[0]);
 int g1 = Integer.parseInt(args[1]);
 int b1 = Integer.parseInt(args[2]);
 Color c1 = new Color(r1, g1, b1);

 int r2 = Integer.parseInt(args[3]);
 int g2 = Integer.parseInt(args[4]);
 int b2 = Integer.parseInt(args[5]);
 Color c2 = new Color(r2, g2, b2);

 StdDraw.setPenColor(c1);
 StdDraw.filledSquare(.25, .5, .2);
 StdDraw.setPenColor(c2);
 StdDraw.filledSquare(.25, .5, .1);

 StdDraw.setPenColor(c2);
 StdDraw.filledSquare(.75, .5, .2);
 StdDraw.setPenColor(c1);
 StdDraw.filledSquare(.75, .5, .1);
 }
}

create first color

create second color

draw first square

draw second square

.25

.2

.75

.5

.1

% java AlbersSquares 0 64 128 105 105 105

Computing with color: monochrome luminance

22

Def. The monochrome luminance of a color quantifies its effective brightness.

examples

red intensity 255 0 0 0 255 0 119 105

green intensity 0 255 0 0 255 64 33 105

blue intensity 0 0 255 0 255 128 27 105

color

luminance 76 150 29 0 255 52 58 105

Applications (next)

• Choose colors for displayed text.

• Convert colors to grayscale.

NTSC standard formula for luminance: 0.299r + 0.587g + 0.114b.

import java.awt.Color;
public class Luminance
{
 public static double lum(Color c)
 {
 int r = c.getRed();
 int g = c.getGreen();
 int b = c.getBlue();
 return .299*r + .587*g + .114*b;
 }
 public static void main(String[] args)
 {
 int r = Integer.parseInt(args[0]);
 int g = Integer.parseInt(args[1]);
 int b = Integer.parseInt(args[2]);
 Color c = new Color(r, g, b);
 StdOut.println(Math.round(lum(c)));
 }
} % java Luminance 0 64 128

52

Computing with color: compatibility

23

Q. Which font colors will be most readable with which background colors on a display?

Rule of thumb. Absolute value of difference in luminosity should be > 128.

 public static boolean compatible(Color a, Color b)
 {
 return Math.abs(lum(a) - lum(b)) > 128.0;
 }

76 0 255 52

76 0 76 179 24

0 76 0 255 52

255 179 255 0 203

52 24 52 203 0

Computing with color: grayscale

24

Goal. Convert colors to grayscale values.

Fact. When all three R, G, and B values are the same,
resulting color is on grayscale from 0 (black) to 255 (white).

Q. What value for a given color?

A. Its luminance!

public static Color toGray(Color c)
{
 int y = (int) Math.round(lum(c));
 Color gray = new Color(y, y, y);
 return gray;
}

examples

red intensity 255 0 0 0 255 0 119 105

green intensity 0 255 0 0 255 64 33 105

blue intensity 0 0 255 0 255 128 27 105

color

luminance 76 150 29 0 255 52 58 105

grayscale
method for Luminance library

OOP context for color

25

Q. How does Java represent color? Three int values? Packed into one int value?

A. We don't know. The representation is hidden. It is an abstract data type.

An object reference is analogous to a variable name.

• It is not the value but it refers to the value.

• We can manipulate the value in the object it refers to.

• We can pass it to (or return it from) a method.

Possible memory representation of red = new Color(255, 0, 0)
 and gray = new Color(105, 105, 105);

105 105 105 x y 255 0 0

y red

memory
address

gray x

We also use object references to
invoke methods (with the . operator)

References and abstraction

26

René Magritte. This is not a pipe.

Java. These are not colors.

public static Color toGray(Color c)
{
 int y = (int) Math.round(lum(c));
 Color gray = new Color(y, y, y);
 return gray;
}

Object-oriented programming. A natural vehicle for studying abstract models of the real world.

It is a picture of a painting of a pipe.

"This is not a pipe."

27

Surrealist computer scientist:
Neither is this.

% java RandomSeq 10000 | java Average

Yes it is! He's referring to the physical object he's holding.
Joke would be better if he were holding a picture of a pipe.

This is not a pipe.

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

Image sources

 http://archive.hudsonalpha.org/education/outreach/basics/eye-color

 http://www.designishistory.com/1940/joseph-albers/

 http://en.wikipedia.org/wiki/Josef_Albers#mediaviewer/File:Josef_Albers.jpg

 http://fr.freepik.com/photos-libre/oeil-au-beurre-noir-et-blanc_620699.htm

 http://en.wikipedia.org/wiki/The_Treachery_of_Images#mediaviewer/File:MagrittePipe.jpg

 http://static.tvtropes.org/pmwiki/pub/images/not-a-pipe-piraro_598.png

CS.8.B.ADTs.Color

9. Abstract Data Types

•Overview
•Color
•Image processing
•String processing

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.8.C.ADTs.Images

Picture ADT

30

public class Picture

 Picture(String filename) create a picture from a file

 Picture(int w, int h) create a blank w-by-h picture

 int width() width of the picture

 int height() height of the picture

Color get(int col, int row) the color of pixel (col, row)

 void set(int col, int row, Color c) set the color of pixel (col, row) to c

 void show() display the image in a window

 void save(String filename) save the picture to a file

API (operations)

width

he
ig

htrow row

column col

pixel (col, row)

pixel (0, 0)

Values (2D arrays of Colors)

An ADT allows us to
write Java programs that
manipulate pictures.

A Picture is a 2D array of pixels.

defined in terms of its ADT values (typical)

Picture client example: Grayscale filter

31

Goal. Write a Java program to convert an image to grayscale.

% java Grayscale mandrill.jpgSource: mandrill.jpg

import java.awt.Color;
public class Grayscale
{
 public static void main(String[] args)
 {
 Picture pic = new Picture(args[0]);
 for (int col = 0; col < pic.width(); col++)
 for (int row = 0; row < pic.height(); row++)
 {
 Color color = pic.get(col, row);
 Color gray = Luminance.toGray(color);
 pic.set(col, row, gray);
 }
 pic.show();
 }
}

32

Picture client example: Grayscale filter

create a new picture

fill in each pixel

% java Grayscale mandrill.jpg

Q. What is the effect of the following code (easy question)?

Pop quiz 1a on image processing

33

Picture pic = new Picture(args[0]);

for (int col = 0; col < pic.width(); col++)

 for (int row = 0; row < pic.height(); row++)

 pic.set(col, row, pic.get(col, row));

pic.show();

Q. What is the effect of the following code (easy question)?

Pop quiz 1a on image processing

34

A. None. Just shows the picture.

Picture pic = new Picture(args[0]);

for (int col = 0; col < pic.width(); col++)

 for (int row = 0; row < pic.height(); row++)

 pic.set(col, row, pic.get(col, row));

pic.show();

Pop quiz 1b on image processing

Q. What is the effect of the following code (not-so-easy question)?

35

Picture pic = new Picture(args[0]);

for (int col = 0; col < pic.width(); col++)

 for (int row = 0; row < pic.height(); row++)

 pic.set(col, pic.height()-row-1, pic.get(col, row));

pic.show();

Pop quiz 1b on image processing

Q. What is the effect of the following code (not-so-easy question)?

36

A. Tries to turn image upside down, but fails.
 An instructive bug!.

Picture pic = new Picture(args[0]);

for (int col = 0; col < pic.width(); col++)

 for (int row = 0; row < pic.height(); row++)

 pic.set(col, pic.height()-row-1, pic.get(col, row));

pic.show();

Pop quiz 1c on image processing

Q. What is the effect of the following code?

37

Picture source = new Picture(args[0]);
int width = source.width();
int height = source.height();
Picture target = new Picture(width, height);
for (int col = 0; col < width; col++)
 for (int row = 0; row < height; row++)
 target.set(col, height-row-1, source.get(col, row));
target.show();

Pop quiz 1c on image processing

Q. What is the effect of the following code?

38

A. Makes an upside down copy of the image.

Picture source = new Picture(args[0]);
int width = source.width();
int height = source.height();
Picture target = new Picture(width, height);
for (int col = 0; col < width; col++)
 for (int row = 0; row < height; row++)
 target.set(col, height-row-1, source.get(col, row));
target.show();

Picture client example: Scaling filter

39

Goal. Write a Java program to scale an image (arbitrarily and independently on x and y).

Source: mandrill.jpg

300x300

% java Scale mandrill.jpg 500 500

500x500

% java Scale mandrill.jpg 600 200

600x200

% java Scale mandrill.jpg 200 400

200x400

99x99

% java Scale mandrill.jpg 99 99

Picture client example: Scaling filter

40

Goal. Write a Java program to scale an image (arbitrarily and independently on x and y).

Ex. Downscaling by halving.
Shrink in half by deleting
alternate rows and columns.

Ex. Upscaling by doubling.
Double in size by replacing
each pixel with four copies.

Picture client example: Scaling filter

41

Goal. Write a Java program to scale an image (arbitrarily and independently on x and y).

A uniform strategy to scale from ws-by-hs to wt-by-ht.

• Scale column index by ws/wt .

• Scale row index by hs/ht .

ws

hs

wt

ht

row trow

column tcol

Approach. Arrange computation to compute exactly one value for each target pixel.

row trow x hs/ht

column tcol x ws/wt

42

Picture client example: Scaling filter

% java Scale mandrill.jpg 300 900

import java.awt.Color;
public class Scale
{
 public static void main(String[] args)
 {
 String filename = args[0];
 int w = Integer.parseInt(args[1]);
 int h = Integer.parseInt(args[2]);
 Picture source = new Picture(filename);
 Picture target = new Picture(w, h);
 for (int tcol = 0; tcol < w; tcol++)
 for (int trow = 0; trow < h; trow++)
 {
 int scol = tcol * source.width() / w;
 int srow = trow * source.height() / h;
 Color color = source.get(scol, srow);
 target.set(tcol, trow, color);
 }
 target.show();
 }
}

More image-processing effects

43

glass filter Sobel edge detectionwave filter

RGB color separation

swirl filter

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.8.C.ADTs.Images

9. Abstract Data Types

•Overview
•Color
•Image processing
•String processing

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.8.D.ADTs.Strings

String ADT

46

A String is a sequence of Unicode characters.

public class String

 String(String s) create a string with the same value

 int length() string length

 char charAt(int i) ith character

 String substring(int i, int j) ith through (j-1)st characters

boolean contains(String sub) does string contain sub?

boolean startsWith(String pre) does string start with pre?

boolean endsWith(String post) does string end with post?

 int indexOf(String p) index of first occurrence of p

 int indexOf(String p, int i) index of first occurrence of p after i

 String concat(String t) this string with t appended

 int compareTo(String t) string comparison

 String replaceAll(String a, String b) result of changing as to bs

String[] split(String delim) strings between occurrences of delim

boolean equals(Object t) is this string's value the same as t's ?

Operations (API)

Java's ADT allows us to
write Java programs
that manipulate strings.

defined in terms of its ADT values (typical)

Programming with strings: typical examples

47

public static boolean isPalindrome(String s)
{
 int N = s.length();
 for (int i = 0; i < N/2; i++)
 if (s.charAt(i) != s.charAt(N-1-i))
 return false;
 return true;
}

Is the string a palindrome?

String query = args[0];
while (!StdIn.isEmpty())
{
 String s = StdIn.readLine();
 if (s.contains(query))
 StdOut.println(s);
}

Find lines containing a specified string in StdIn

String query = args[0];

while (!StdIn.isEmpty())
{
 String s = StdIn.readString();
 if (s.startsWith("http://") && s.endsWith(".edu"))
 StdOut.println(s);
}

Search for *.edu hyperlinks in the text file on StdIn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A T A G A T G C A T A G C G C A T A G C T A G A T G T G C T A G C

String client example: gene finding

48

Pre-genomics era. Sequence a human genome.
Post-genomics era. Analyze the data and understand structure.

Goal. Write a Java program to find genes in a given genome.

Genomics. Represent genome as a string over A C T G alphabet.

Gene. A substring of genome that represents a functional unit.

• Made of codons (three A C T G nucleotides).

• Preceded by ATG (start codon).

• Succeeded by TAG, TAA, or TGA (stop codon).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A T A G A T G C A T A G C G C A T A G C T A G A T G T G C T A G C
start stopgene start stopgene

49

String client warmup: Identifying a potential gene

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A T G C A T A G C G C A T A G
start stopgene

Goal. Write a Java program to determine
whether a given string is a potential gene.

public class Gene
{
 public static boolean isPotentialGene(String dna)
 {
 if (dna.length() % 3 != 0) return false;
 if (!dna.startsWith("ATG")) return false;
 for (int i = 0; i < dna.length() - 3; i+=3)
 {
 String codon = dna.substring(i, i+3);
 if (codon.equals("TAA")) return false;
 if (codon.equals("TAG")) return false;
 if (codon.equals("TGA")) return false;
 }
 if (dna.endsWith("TAA")) return true;
 if (dna.endsWith("TAG")) return true;
 if (dna.endsWith("TGA")) return true;
 return false;
 }
 public static void main(String[] args)
 {
 StdOut.println(isPotentialGene(args[0]));
 }
}

% java Gene ATGCATAGCGCATAG
true
% java Gene ATGCGCTGCGTCTGTACTAG
false
% java Gene ATGCCGTGACGTCTGTACTAG
false

String client exercise: Gene finding

50

Algorithm. Scan left-to-right through dna.

• If start codon ATG found, set beg to index i.

• If stop codon found and substring length is a multiple of 3, print gene and reset beg to -1.

i
codon

beg output remainder of input stringstart stop

0 -1 A T A G A T G C A T A G C G C A T A G C T A G A T G T G C T A G C
1 TAG -1 T A G A T G C A T A G C G C A T A G C T A G A T G T G C T A G C
4 ATG 4 A T G C A T A G C G C A T A G C T A G A T G T G C T A G C
9 TAG 4 T A G C G C A T A G C T A G A T G T G C T A G C

16 TAG 4 CATAGCGCA T A G C T A G A T G T G C T A G C
20 TAG -1 T A G A T G T G C T A G C
23 ATG 23 A T G T G C T A G C
29 TAG 23 TGC T A G C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A T A G A T G C A T A G C G C A T A G C T A G A T G T G C T A G C
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
A T A G A T G C A T A G C G C A T A G C T A G A T G T G C T A G C

start stopgene start stopgene

Implementation. Entertaining programming exercise!

Goal. Write a Java program to find genes in a given genome.

OOP context for strings

51

Possible memory representation of

x 15 x+9 4 x+1 4

x

a a c a a g t t t a c a a g c

genome

memory
address

length

t s

Implications

• s and t are different strings that share the same value "acaa".

• (s == t) is false (because it compares addresses).

• (s.equals(t)) is true (because it compares character sequences).

• Java String interface is more complicated than the API.

String genome = "aacaagtttacaagc";

String s = genome.substring(1, 5);

String t = genome.substring(9, 13);

Object-oriented programming: summary

52

In Java, programs manipulate references to objects.

• String, Picture, Color, arrays, (and everything else) are reference types.

• Exceptions: boolean, int, double and other primitive types.

• OOP purist: Languages should not have separate primitive types.

• Practical programmer: Primitive types provide needed efficiency.

This lecture: You can write programs to manipulate colors, pictures, and strings.
Next lecture: You can define your own abstractions and write programs that manipulate them.

Object-oriented programming.

• Create your own data types (sets of values and ops on them).

• Use them in your programs (manipulate objects).
An object holds a data type value.
Variable names refer to objects.

T A G A T G T G C T A G C

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

CS.8.D.ADTs.Strings

C OMPUTER SC I EN CE
 S E D G E W I C K / W A Y N E

 PART I : PROGRAMMIN G IN JAVA

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

8. Abstract Data Types

Section 3.1

http://introcs.cs.princeton.edu

