
Version Control with Git
CS 121: Data Structures

Attendance Quiz: Directed Graphs
• Scan the QR code, or find today’s attendance quiz under the

“Quizzes” tab on Canvas

• Password: to be announced

• Give the in-degree and out-degree of each vertex

• Which vertices can’t be reached from a search starting at vertex 2?

5

1

6

2

4

3

7

0

Attendance Quiz: Directed Graphs

• Give the in-degree and out-degree of each vertex

• Which vertices can’t be reached from a search starting at vertex 2?

5

1

6

2

4

3

7

0

Homework

Outline
• Motivation for version control systems

• Git:

• Concepts

• Data structures

• Challenges

• Advice

Version Control Systems

Problems: Code Versioning and Integrity
• Have you ever:

• Accidentally deleted a file?

• Made changes to a file that you wanted to undo?

• Possible – if you haven't closed the editor

• When working on homework, these are (usually) minor inconveniences

• Working on real-world code, these become major problems!

• What if you messed up a file people had been working on for years?!

Problem: Coordination

• Imagine 100 people are working on a software project together

• How can you coordinate this? All sharing the same computer? Emailing
changes back and forth? Who has the latest version of the project?

• This sounds like a nightmare!

👨💻👩💻👩💻👨💻🧑💻🧑💻🧑💻👨💻👨💻👩💻🧑💻👩💻👨💻🧑💻👩💻✉ ✉

Solution: "Version Control Systems" (VCS)

• Keep track of multiple versions of each file

• A file may be edited over time, possibly by different people

• For any VCS to be scalable, appropriate data structures must be used

• A good reason to cover them in this class!

VCS Landscape

👑 👑
Industry
Standard

Less
Common

Git Concepts

Friday @ 5:00pm
Fixed bug in addNearest()

Thursday @ 5:00pm
Completed implementation

of Tour class

Tuesday @ 4:00pm
Implemented constructors

and toString()

Commits
• It is helpful to record regular snapshots/checkpoints of your codebase

• Git refers to these as "commits"

• Rule of thumb: commit code after a conceptually atomic change has been
completed

• Too granular: declaring a couple variables

• Too coarse: adding 20 Java classes

• Good: adding a single class, a method, or related methods, fixing a bug, etc.

• Git makes it easy to compare code to earlier commits, restore earlier commits, etc.

Tuesday @ 1:00pm
Add skeleton for 

Tour class

Branches

• What if you want to work on multiple changes at the same time?

• For example, developing a new feature, while also fixing bugs?

• Git uses "branches" to allow code to develop along different paths

• When changes are completed, they should be "merged"

main

feature-28

Multiple Copies of a Repository
• How can multiple people collaborate on a project, without getting in each

other's way?

• Multiple versions of the git repository: one or more on servers (e.g., hosted
by GitHub), other versions on developer's own computers

• Developers should periodically push their changes to the remote server,
and eventually merge their changes into the main remote branch

• They should also update their local version of the main branch regularly,
so they can build on others' contributions

Distributed Version Control

main

feature-20

main

main

feature-19

👨💻 John's Local Repo

👩💻 Katie's Local Repo

☁ Repo on GitHub

main

feature-19

Distributed Version Control
main

main

feature-19

☁ John's Forked Repo on GitHub

👨💻 John's Local Repo on His Laptop

☁ Upstream Repo on GitHub

Demos

Demo: Using Git on GitHub
• Browse projects

• Make your own projects

• Contribute changes to others' projects

• Fork

• Create a branch

• Make changes

• Open a pull request

Demo: Using Git with GitHub Desktop
• Update my fork's main branch

• Clone my fork

• Create a branch

• Make changes

• Commit my changes

• Publish (push) my changes

• Open a pull request

Demo: Using Git on the Command-Line
• Clone my fork

• View history

• Create a branch

• Make changes

• Stage my changes

• Review my changes

• Commit my changes

• Push my changes

• Open a pull request

pstory@Gray-MBP ~/D/csci121-ascii-art (bonsai-art)> git status
On branch bonsai-art
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 art/bonsai.txt

nothing added to commit but untracked files present (use "git add" to track)
pstory@Gray-MBP ~/D/csci121-ascii-art (bonsai-art)> git add art/bonsai.txt
pstory@Gray-MBP ~/D/csci121-ascii-art (bonsai-art)> git status
On branch bonsai-art
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: art/bonsai.txt

pstory@Gray-MBP ~/D/csci121-ascii-art (bonsai-art)> git commit
[bonsai-art 7184d58] Add Bonsai ASCII art
 1 file changed, 14 insertions(+)
 create mode 100644 art/bonsai.txt

Git Command-Line Reference
Clone my fork git clone git@github.com:peterstory/csci121-ascii-art.git

View history git log
git log --all --decorate --oneline --graph --name-status

Create a branch git checkout -b bonsai-art

Stage my changes git add art.js art/bonsai.txt

Review my changes git status
git diff --cached

Commit my changes git commit

Push my changes git push
git push --set-upstream origin bonsai-art

Git Data Structures

Review: Hash Tables
• Basic operations:

• put(key, value)

• get(key)

• delete(key)

• Compute and use a key's hash

• hash("This string is a key") → 
687498451 (32-bit, represented as an integer), 
feacb7c9c8b87bbec18a6fd58dc4119829676c7a (160-bit, represented as hex), 
etc.

• Operations are very fast: constant order average complexity

Git Data Structures

• Git stores data using SHA-1 checksums (i.e., a hash)

• Files (i.e., blobs), directories (i.e., trees), commit data, etc.

• Data objects are stored on disk, with filenames based on the hash

• If you know the hash, locating the file containing the object is a
constant order operation!

Example Git Repository

• readme.txt

• recipes/

• green_eggs_and_ham.txt

• pancakes.txt

How Git Objects Are Stored
Commits

Trees

Blobs

description
tree

blob
tree

blob
blob

I'm keeping
track of my
favorite
recipes

Green eggs
and ham
- 1x egg
- Food
coloring

Pancakes
- 1x egg
- 1/2 cup
flour
- 1tbsp
water

description
parent
tree

blob
tree

A
collection
of my
favorite
recipes

description
parent
tree

blob
tree

blob
blob

Green eggs
and ham
- 1x egg
- Ham
- Food
coloring

HEAD

main

6eec92b 0cba507 af59c43

fe77070 6a440ec 2cc6de1 b7b88a3 14d4e2d

beed3b6 e544cf1 59dab2c cc42ed3 9ca3434

How Git Objects Are Stored
description
tree fe77070

I'm keeping
track of my
favorite
recipes

Green eggs
and ham
- 1x egg
- Food
coloring

Pancakes
- 1x egg
- 1/2 cup
flour
- 1tbsp
water

description
parent 6eec92b
tree 2cc6de1

A
collection
of my
favorite
recipes

description
parent 0cba507
tree b7b88a3

Green eggs
and ham
- 1x egg
- Ham
- Food
coloring

HEAD: af59c43

main: af59c43

6eec92b 0cba507 af59c43

blob beed3b6
tree 6a440ec

fe77070

blob 59dab2c
blob e544cf1

6a440ec

blob cc42ed3
tree 6a440ec

2cc6de1

blob cc42ed3
tree 14d4e2d

b7b88a3

blob 59dab2c
blob 9ca3434

14d4e2d

beed3b6 e544cf1 59dab2c cc42ed3 9ca3434

Demo

Demo: Inspecting Git Objects

• ls .git/objects/*

• git log # To identify commit hash

• git cat-file -t COMMIT_HASH

• git cat-file -p COMMIT_HASH

• ...

Based on: https://www.youtube.com/watch?v=P6jD966jzlk

https://www.youtube.com/watch?v=P6jD966jzlk

Git Challenges

Moving Data Between Locations
• Major challenge: moving data between different locations:

• Upstream repository (e.g., ClarkuCSCI/csci121-ascii-art on GitHub)

• Fork of repository (e.g., peterstory/csci121-ascii-art on GitHub)

• Local clone of fork (i.e., on your laptop)

• Repository

• Index

• Workspace

• Necessary complexity, to support distributed version control, but still a challenge!

http://www.ndpsoftware.com/git-cheatsheet.html

http://www.ndpsoftware.com/git-cheatsheet.html

Merge Conflicts
• What happens if two people edit the same file (e.g., art.js)?

• Keep one person's edits? Combine their changes in some way?

• Merges can be easy to resolve

• Messy merges are not git's fault – it's a problem of team communication

• People shouldn't be simultaneously making conceptually interfering
changes

• Use code beautifiers to avoid "fighting" over formatting decisions

Merge Conflict

Merge Conflict

const ART = [
 {"title": "Owl",
 "filename": "owl.txt",
 "credit_text": "Donovan Bake",
 "credit_url": "https://www.asciiart.eu/animals/birds-land"},
 {"title": "Earth",
 "filename": "earth.txt",
 "credit_text": "jgs",
 "credit_url": "https://www.asciiart.eu/space/planets"},
<<<<<<< mac-art
 {"title": "iMac",
 "filename": "imac.txt",
 "credit_text": "dan greuel",
 "credit_url": "https://www.asciiart.eu/computers/apple"},
=======
 {"title": "Llama",
 "filename": "llama.txt",
 "credit_text": "ejm",
 "credit_url": "https://ascii.co.uk/art/llama"},
>>>>>>> main
];

Merge Conflict Resolution

const ART = [
 {"title": "Owl",
 "filename": "owl.txt",
 "credit_text": "Donovan Bake",
 "credit_url": "https://www.asciiart.eu/animals/birds-land"},
 {"title": "Earth",
 "filename": "earth.txt",
 "credit_text": "jgs",
 "credit_url": "https://www.asciiart.eu/space/planets"},
 {"title": "iMac",
 "filename": "imac.txt",
 "credit_text": "dan greuel",
 "credit_url": "https://www.asciiart.eu/computers/apple"},
 {"title": "Llama",
 "filename": "llama.txt",
 "credit_text": "ejm",
 "credit_url": "https://ascii.co.uk/art/llama"},
];

Undoing Changes
• Recommended: make a new commit that puts things in the desired state

• Potentially dangerous: editing the commit history

• If the commits are only local, they can be reworked without affecting
others

• If the commits are visible to the rest of the team, reworking the history
will interfere with others' branches, and so is not recommended

• Sometimes necessary (e.g., if you commit sensitive data to a repo)

On undoing, fixing, or removing commits in git: http://sethrobertson.github.io/GitFixUm/fixup.html

http://sethrobertson.github.io/GitFixUm/fixup.html

Editing Commit History
Oh no – real customer data was used,
including their credit card numbers!

Tuesday @ 1:00pm
Add Unit Test for

Checkout Bug

Tuesday @ 2:00pm
Add Sample Customer
Data for Checkout Bug

7184d58

Tuesday @ 3:00pm
Fix for Checkout Bug

Tuesday @ 4:00pm
Fix for Homepage Styling

cffbdaf 9487242 1c10d24

Tuesday @ 1:00pm
Add Unit Test for

Checkout Bug

Tuesday @ 2:00pm
Add Sample Customer
Data for Checkout Bug

7184d58

Tuesday @ 3:00pm
Fix for Checkout Bug

Tuesday @ 4:00pm
Fix for Homepage Styling

feacb7c a556586 3471f41

If this commit is changed, the commit hashes
of all subsequent commits will change, too

Git Advice

Be Careful What You Commit
• Generally, don't commit build artifacts (e.g., .class files)

• Definitely don't commit:

• Temporary files (e.g., .DS_Store, __pycache__, etc.)

• Passwords, SSH keys, or any other sensitive information

• Staging files one-at-a-time will help you avoid mistakes

• Use a .gitignore file to list files which shouldn't be committed

Write Good Commit Messages

https://xkcd.com/1296/

https://xkcd.com/1296/

Write Good Commit Messages

https://cbea.ms/git-commit/

1. Separate subject from body with a blank line

2. Limit the subject line to 50 characters

3. Capitalize the subject line

4. Do not end the subject line with a period

5. Use the imperative mood in the subject line

• If applied, this commit will: your subject line here

6. Wrap the body at 72 characters

7. Use the body to explain what and why vs. how

https://cbea.ms/git-commit/

Short Commit Message

 Add Initialize Git Submodules to setup setups

More Detailed Commit Message

 Set DJANGO_DEBUG to False by default

 Good to have secure defaults. When DJANGO_DEBUG is True,
 DB passwords, etc. can be seen on error pages.

Merge Commit,
Summarizing Component Commits

 Fix APK downloading (#332)

 * Update the submodule version of privacy-practice-analysis,
 to fix APK downloading
 * Update the base image to Ubuntu 18.04 (to fix APK
 downloading) and update nodejs (as the older version failed
 to install)
 * Update the submodule version of privacy-policy-retrieval,
 to remove pytest-catchlog, which was causing test errors.
 * Update pytest (as the latest version includes the functionality
 of pytest-catchlog)
 * Update psycopg2 (as an update was required, presumably
 because the postgresql-client version changed when we
 updated Ubuntu)

 Fixes #331

Use GitHub to Organize Your Work

• Create issues for changes you plan to make

• Document research, your thought process, etc. in the issue

• Work on code in a branch named after your issue (e.g., issue-12)

• Reference the issue number in your commits

• The commits will appear on the issue page!

Course Evaluations

• Available from the “My eUWTE’s” tab on Canvas

• Current response rate is only 25%

• See “Giving constructive feedback on course evaluations” link on the
course website

• Please complete by 12:05pm, after which I’ll announce the lab

