Data Structures and Algorithms (CS121/124 and CS160)

* Foundation in computer science, diverse applications, broad impact
 * in problem solving and computational thinking
 * Along with cs 180, 170, 140

* Classical and Fundamental Data Structures and Algorithms
 * Data Structures
 * array, linked lists, stacks, queues, priority queues, trees, hash tables, disjoint sets (union find)
 * concepts, algorithms, implementations and applications
 * Algorithms: big ideas, subtle details, adaptations, applications, general principles
 * Sorting algorithms
 * Searching: binary search, Symbol Table based approaches
 * Graph Algorithms
 * Traversals, and traversal based problems
 * Minimum Spanning Trees, Shortest Paths
 * What, how, why (correctness, efficiency under ... conditions), alternatives (pros and cons), adaptations
CS121/124 and CS160

* Foundational knowledge and skills, diverse applications, broad impact

* Analysis: correctness, complexity (big-Oh notation, tilde notation)

* Design techniques
 * Iteration (can be subtle and powerful, e.g., sorting, binary search, priority queues)
 * Recursion (e.g. trees, dfs on graphs, quick sort)
 * Divide and conquer (e.g. merge sort, quick sort, binary search)
 * Randomized algorithm (e.g. quick sort, quick select)
 * Greedy (be careful about correctness, e.g. MST, Dijkstra’s, coin change)
 * Dynamic Programming and Recursion with Memoization (basic introductions)
Computational Thinking and Problem Solving

* Apply knowledge, principles, methods, skills to solve new problems
 * Identify and formulate new problems; or understand given problems
 * Develop a good (correct, efficient) solution
 * Iteratively decompose a big problem into smaller problems
 * Different levels of details: short elevate talk to detailed pseudocode
 * Develop, test, revise ideas/solutions before settling on a good one
 * Implement the solution and produce high-quality programs and docs
 * Systematic, disciplined development
 * Incremental development, thorough testing, professional style
 * Reflect on your work and be better prepared for new problems
 * What were the stumbling blocks? How did you solve them? Any connections to the old problems/methods? New insights, approach...

* Develop and enhance fundamental skills
 * Technical reading, algorithms/code tracing, debugging, testing
 * Critical thinking, deep understanding, disciplined work, and time management...
A Few Points to Wrap up this semester

* Sorting, Hash Tables, Binary Search Trees ...
 * The **system** side: implement the data structures and algorithms (e.g. java system developers at Oracle)
 * The **client** side: use the provided data structures and algorithm in their own code (e.g. entry-level java developers)
 * Our study and textbook focused on the system side. Also be sure to understand the client side and know how to use the system libraries.
 * Example: java system sort and `compareTo()` method (using 2D point as an example)
A Few Points to Wrap up this semester

Classical, important algorithms and data structures
* know their properties, and
* consider adaptations to achieve better performance.

Examples:
* If your data has some special properties, consider modifying some sorting algorithm to take advantage of the properties
* Prim’s eager MST Algorithm, Dijkstra’s shortest path algorithm
 * the code in the textbook and algs4.jar: based on the adjacency list representation and indexed-priority queue (pretty subtle to understand or implement):
 * Some example review questions: why indexed priority queue? why not just the basic priority queue?
 * the worst case time complexity is $O(E \lg V)$ -- another review question: how to explain this complexity?
* What if your graph is dense, with the number of edges E in the order of V^2?
 * The algs4 code will have $O(V^2 \lg V)$ worst-case time complexity.
 * It is possible to achieve better worst case performance $O(V^2)$ with simpler data structure.
 * Check out exercise problem 4.3.19.
My heartfelt thanks to students and TAs for a great cs160 class this spring.

Many students worked very hard and rose to the challenge. You should be proud of yourself.

Our class wouldn’t have gone so well without our capable and responsible TAs.

I wish you all the best in your future endeavors and hope that you will continue to hold yourself to high standards in your study and work.