Functional
Dependencies

CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner
Gordon College

Agenda

e Homework Review

« Database Design Principles
* Decomposition
* Functional Dependencies
* Closures
* Canonical Cover

 Introduce Homework

Today you will learn...

 How to test the "goodness" of a relational schema

Introduction

e Terminology review

* Relation schema: set of attributes for a relation (R, R,, ...)
 Relation: the actual data stored in some relational schema (ry, 1, ...)
+ Tuple: a single actual row in the relation (t, t,, ...)

* Library database schema

* Book(call_number, copy number, accession_number, title, author)
* Checked_out(call_number, copy number, borrower_id, date_due)
* Borrower(borrower_id, last_name, first_name)

call_number — a unique identifier for a book (e.g., "Databases, 7" Edition")
copy_number — each copy of that book would have a different copy number

accession_number — unique number (ID) assigned to a copy of a book when
the library acquires it

ER Diagram

. Qccession number>
borrower id

/ /

N

Borrower

(last_ name /) (date_due) call copy

C rrsname . A
Gall_numbeo Qopy_numbeD

Goals of Database Design

 Goals

» Avoid redundancies and the resulting from insert,
update, and delete anomalies by decomposing schemas
as needed

* Ensure that all decompositions are lossless-join

 Ensure that all decompositions are dependency
preserving

* Sometimes you cannot have all three...

Decomposition

The Art of Database Design

Designing a database is a balancing act

On the one extreme, you can have a universal relation (in which all
attributes reside within a single relation schema)
- Everything(
borrower_id, last_name, first_name, // from borrower
call_number, copy_number,
accession_number, title, author // from book
date_due // from checked_out

)

* Leads to numerous anomalies with changing data in the database

Break Up Relations with
Decomposition

* Decomposition 1s the process of breaking up an original
schema into two or more schemas

- Each attribute of the original schema appears in at least one
of the new schemas

But this can be taken too far
* Borrower(borrower_id, last_name, first_name)

* Book(call_number, copy_number, accession_number, title,
author)

* Checked_out(date_due)

Leads to lossy-join problems

We Want Lossless-Join

Decompositions

* A proper balance should:

+ Allow decomposition of the Everything relation, reducing
potential for anomalies

+ But preserve connections between the tuples of the
participating relations, so that the natural join of the new
relations = the original Everything relation

 Formal definition

* For some relation schema R decomposed into two or more
schemas (R, R,, ... R))

* Where R=R;UR, U ... UR,

* A lossless-join decomposition means that for every legal instance
r of R decomposed into ry, 1,, ... r, of R, R,, and R

Cr=Ir X, X, KT,

Database Design Goal: Create
“Good” Relations

We want to be able to determine whether a particular
relation R 1is in “good” form.

- We'll talk about how to do this shortly

In the case that a relational schema R is not in "good”
form, decompose it into a set of schemas {R, R,, ..., R}
such that

* each relation is in good form
* the decomposition is a lossless-join decomposition

Our theory 1s based on:
* functional dependencies
- multivalued dependencies (next lecture)

Goals of Database Design

 Goals

» Avoid redundancies and the resulting from insert,
update, and delete anomalies by decomposing schemas
as needed

* Ensure that all decompositions are lossless-join

 Ensure that all decompositions are dependency
preserving

* Sometimes you cannot have all three...

Functional Dependency (FD)

Functional Dependency (FD)

When the value of a certain set of attributes uniquely
determines the value for another set of attributes

* Generalization of the notion of a key
* A way to find “good” relations
* A — B (read: A determines B)

Formal definition

* For some relation schema R and attribute sets A (A < R) and
B(BcR)

* A — B if for any legal relation on R
 If there are two tuples t; and t, such that t;(A) = t,(A)
It must be the case that t,(B) = t,(B)

Finding Functional
Dependencies

* From keys of an entity
* From relationships between entities

* Implied functional dependencies

FDs from Entity Keys

N

FDs from One to Many /
Many to One Relationships

RES X RES

A — BC
W — XY
A — BCMWXY

FDs from One to One
Relationships

REF X RES

A — BC

W — XY

A —- BCMWXY
W — XYMABC

FDs from Many to Many
Relationships

RELS T RES
N

A — BC
W — XY
AW — M

Closures and Canonical Cover

Transitive Closure, F*

Initial FDs, F

Canonical
Cover, F.

Closures

Implied Functional
Dependencies

Initial set of FDs logically implies other FDs
cJIfA—-Band B — C,then A —» C

Closure

- If F 1s the set of functional dependencies we develop
from the logic of the underlying reality

* Then F+ (the transitive closure of F) is the set consisting
of all the dependencies of F, plus all the dependencies
they imply

Rules for Computing F+

We can find F* the closure of F, by repeatedly applying
Armstrong’s Axioms:

- if fca,thena — f (reflexivity)

» Trivial dependency
cifoa— g thenya— ypf (augmentation)
«ifoa— f and f— y,thena — vy (transitivity)

Additional rules (inferred from Armstrong’s Axioms)
c Ifao—> fand o — vy, thena — fy (union)

c Ifa— fy,thena — fanda — vy (decomposition)

« If o > B andy f— 0O, then oy — J (pseudotransitivity)

Applying the Axioms

* R=(A4,BCGH]I
F={ A—> B
A—>C
CG—>H
CG—>1

B— H}

e some members of F*
c A—> H
* by transitivity from 4 - Band B—> H

c AG—>1T

* by augmenting 4 - C with G, to get AG — CG
and then transitivity with CG — I

- CG— HI
* by augmenting CG — I'to infer CG — CG],
and augmenting of CG — H to infer CGI — HI,
and then transitivity
« or by the union rule

Algorithm to Compute F+

* To compute the closure of a set of functional
dependencies F:

Fr=F
repeat
for each functional dependency fin F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F'*
for each pair of functional dependencies fiand f, in F’

if f; and f, can be combined using transitivity
then add the resulting functional
dependency to F'*
until '+ does not change any further

Algorithm to Compute the
Closure of Attribute Sets

* (Given a set of attributes o, define the closure of o under F
(denoted by a*) as the set of attributes that are
functionally determined by o under F

« Algorithm to compute o™, the closure of o under F

result == o]
while (changes to result) do
for each — yin F'do
begin
if B < result then result .= result U vy
end

Example of Attribute Set
Closure

R=(4,BCGH]I)

F={A—> B
A-—>C
CG->H
CG—>1

B— H}

(AG)"
1. result = AG
2. result = ABCG (A— Cand 4 — B)
3. result = ABCGH (CG— Hand CG < AGBC)
4. result = ABCGHI (CG — Iand CG < AGBCH)

Is AG a candidate key?
1. Is AG a super key?
1. Does AG— R?==1s (AG)*o R
2. Is any subset of AG a superkey?
1. Does4—> R? ==1Is(A)*o R
2. Does G—>R!==1Is(G)* o R

Canonical Cover

Canonical Cover

Sets of functional dependencies may have redundant
dependencies that can be inferred from the others

* For example: 4 —» Cisredundantin: {4 > B, B—> C A— C}

 Parts of a functional dependency may be redundant
« Eg:.onRHS: {4—> B, B—>(C, A— CD} can be simplified to
{A—>B, B—>C, A— D}

 Eg:onLHS: {A—>B, B—(C, AC— D} can be simplified to
{A—>B, B—>C, A— D}

Intuitively, a canonical cover of F is a “minimal” set of
functional dependencies equivalent to F, having no redundant
dependencies or redundant parts of dependencies

Definition of Canonical Cover

A canonical cover for F'is a set of dependencies F.such that
Flogically implies all dependencies in F, and
F.logically implies all dependencies in F, and
No functional dependency in F, contains an extraneous attribute, and
Each left side of functional dependency in F,is unique.

To compute a canonical cover for F:
repeat
Use the union rule to replace any dependencies in F’
o; = B; and oy — B, with a; — B B,
Find a functional dependency o — [with an
extraneous attribute either in o or in [
/* Note: test for extraneous attributes done using F, not F*/
If an extraneous attribute 1s found, delete it from o — 3
until /' does not change

Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

How to Find a Canonical
Cover

Another algorithm

* Write F as a set of dependencies where each has a
single attribute on the right hand side

» Eliminate trivial dependencies
* In which o — fand f c a (reflexivity)

- Eliminate redundant dependencies (implied by other
dependencies)

* Combine dependencies with the same left hand side

For any given set of FDs, the canonical cover 1s not
necessarily unique

Canonical Cover Practice

* Find the canonical cover of the library schema:

e Book(call_number, copy_number, accession_number, title,
author)

e Checked_out(call_number, copy_number, borrower_id,
date_due)

* Borrower(borrower id, last_name, first_name)

* call_number — a unique identifier for a book (e.g., "Databases,
7t Edition")

copy_number — each copy of that book would have a different
copy number

accession_number — unique number (ID) assigned to a copy of
a book when the library acquires it

Uses of Functional
Dependencies

» Testing for lossless-join decomposition
» Testing for dependency preserving decompositions

* Defining keys

Testing for Lossless-Join
Decomposition

 The closure of a set of FDs can be used to test if a
decomposition is lossless-join

* A decomposition of R into R, and R, is lossless join
if at least one of the following dependencies is in F*:

*RiNnR, > R,
N leRz—)Rz

* Does the intersection of the decomposition satisfy at
least one FD?

Testing for Dependency
Preserving Decompositions

The closure of a set of FDs allows us to test a new tuple being
inserted into a table to see if it satisfies all relevant FDs without
having to do a join

This 1s desirable because joins are expensive

Let F; be the set of dependencies F'* that include only
attributes in R,
« A decomposition is dependency preserving, if
(FLUFU...UF,)*=F*

« If it is not, then checking updates for violation of functional
dependenc1es may require computing joins, which is expensive.

The closure of a dependency preserving decomposition equals
the closure of the original set

Can all FDs be tested (either directly or by implication) without
doing a join? Check the canonical cover.

Keys and Functional
Dependencies

* (@Given a relation schema R with attribute set K <« R

- K is a superkey if K > R

- K is a candidate key if there 1s no subset L of K such that
L—>R

A superkey with one attribute 1s always a candidate key
- Primary key is the candidate key K chosen by the designer

* Every relation must have a superkey (possibly the entire
set of attributes)

* Key attribute — an attribute that 1s or is part of a candidate
key

Knowledge Check

Schema: (ABCD)
FDs: AB—>C,C—>B,D—>C

Decomposition | Lossless join? | Dependency
preserving?

(ABC)(CD) No Yes
(ACD)(BCD) Yes No

Candidate key for the original schema?
AD —» ABCD

Credit: https://stackoverflow.com/a/39466384/3043071

https://stackoverflow.com/a/39466384/3043071

Summary

Canonical Cover: minimal set of functional dependencies
(no redundancies)

Lossless-Join: if you decompose a relation into two
relations, can you reconstruct the original relation?

* Does the intersection of the relations' attributes fully
determine one of the relations' attributes?

« If so, the attributes in the intersection can serve as a key,
linking the relations

Dependency Preserving: can all functional dependencies
be checked without a join?

