
Query Processing and
Optimization

CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner

Gordon College

Practice Quiz: Indexing

• With a neighbor, discuss the benefits and drawbacks of:
• Hashed indexes

• Ordered indexes (e.g., B+ Tree)

• Clustering indexes

Today you will learn…

• How databases execute queries efficiently

• Why relational algebra is useful!

Library Database Schema

book

call_number copy_number accession_number title

checked_out

call_number copy_number borrower_id date_due

borrower

borrower_id name

book_author

call_number author

Example Query

• Find the titles of all books written by "Bruce
Schneier"

• SELECT title
FROM book NATURAL JOIN book_author
WHERE author = "Bruce Schneier"

• Many possible execution plans. For example:
A. πtitle (σauthor = ‘Bruce Schneier’ (Book ⋈ BookAuthor))

B. πtitle (Book ⋈ (σauthor = ‘Bruce Schneier’ BookAuthor))

Evaluating Execution Plans

• Compare:
A. πtitle (σauthor = ‘Bruce Schneier’ (Book ⋈ BookAuthor))

B. πtitle (Book ⋈ (σauthor = ‘Bruce Schneier’ BookAuthor))

• Relevant information:
• How many records are in each table?

• What indexes do we have?

• How many books did Bruce Schneier write?

Evaluating Execution Plans
• Compare:

A. πtitle (σauthor = ‘Bruce Schneier’ (Book ⋈ BookAuthor))
B. πtitle (Book ⋈ (σauthor = ‘Bruce Schneier’ BookAuthor))

• Suppose:
• BookAuthor has 20K tuples
• Book has 10K tuples (an average of two authors per book)
• Only 2 BookAuthor tuples contain “Bruce Schneier”
• Relevant indexes exist

• What’s the performance difference?
A. Processes all 10K book tuples and 20K bookAuthor tuples to

create a temporary relation with 20K tuples. Processes at least
50K tuples.

B. Uses indexes to locate 2 BookAuthor tuples and 2
corresponding book tuples. Processes just 4 tuples!

Outline

• Selection Strategies

• Join Strategies

• Join Size Estimation

• Rules of Equivalence

Selection Strategies

• How to perform selection (σ)?

• Linear search is always an option
• Full table scan

• Potentially requires accessing every disk block in the
table

• Alternatively, use an index
• Binary search, tree search, or hash table lookup

• Indexes themselves require disk accesses, but it's
usually worth it

• Indexes may be partly or entirely stored in memory

Query Type vs Index Type

Condition Example Clustering /
Primary Index

Ordered Index Hashed Index

Exact match
on candidate
key

id = 12345 Easy to locate. Easy to locate. Easy to locate.

Exact match
on non-key

status =
‘Active’

N/A Find first
match (+
potential scan)

Find first
match (+
potential scan)

Range query age between
21 and 65

Find first match
+ sequential
scan

Find first
match + scan,
but slower

Not useful

Complex query color = ‘blue’
or status =
‘Inactive’

Not useful Not useful,
unless multiple
or multi-
column
indexes

Not useful,
unless multiple
or multi-
column
indexes

Join Strategies

• Joins are most expensive part of query processing
• Number of tuples examined can approach the product of the

number of records in tables being joined

• Example
• σ Borrower.name = BookAuthor.authorBorrower × BookAuthor
• Where BookAuthor has 10K tuples and Borrower has 2K tuples

• Cartesian join yields 20 million tuples to process

Nested Loop Join

for (int i = 0; i < 2000; i++) {
 retrieve Borrower[i];
 for (int j = 0; j < 10000; j++) {
 retrieve BookAuthor[j];
 if (Borrower[i].name == BookAuthor[j].author) {
 construct tuple from Borrower[i] & BookAuthor[j];
 }
 }
}

Nested Loop Join

• Simplest and least efficient approach. If each
retrieval requires a separate disk access:
• 2K accesses for Borrower tuples (outer loop)
• 20 million accesses for BookAuthor tuples (inner loop)
• 20,002,000 disk accesses total

• If each disk access takes 10ms, this takes:
> 200K seconds ≈ 55 hours

• Doesn’t count time needed to write the temporary
join relation (it might not fit in memory)

Nested Block Join

for (int i = 0; і < 2000; i += 20) {
 retrieve block containing Borrower[i]..Borrower[i+19];
 for (int j = 0; j < 10000; j += 20) {
 retrieve block containing BookAuthor[j]..
 BookAuthor[j+19];
 for (int k = 0; k < 19; k++)
 for(int l = 0; l < 20; l++)
 if (Borrower[i+k].name == BookAuthor[j+l].author)
 construct tuple from Borrower[i+k] &
 BookAuthor[j+1];
 }
}

Nested Block Join

• Since tables are stored in blocks, we processes data
by block. If each block contains 20 tuples:
• 100 accesses for Borrower tuples (outer loop)

• 500 accesses for BookAuthor tuples (inner loop)
executed 100 times = 50K accesses

• 50,100 disk accesses total

• This requires 50,100 * 10 ms ≈ 8.5 minutes

• 400x faster than nested loop join!

Buffering an Entire Relation

for (int i = 0; i < 2000; i += 20)
 retrieve and buffer block containing
 Borrower[i]..Borrower[i+19];

for (int j = 0; j < 10000; j += 20) {
 retrieve block containing BookAuthor[j]..BookAuthor[j+19];
 for (int k = 0; k < 2000; k++)
 for (int l = 0; l < 20; l++)
 if (Borrower[k].name == BookAuthor[j+l].author)
 construct tuple from Borrower[k] & BookAuthor[j+l];
}

Buffering an Entire Relation

• Using memory, improvement is possible. If the
entire Borrower relation can be stored memory:
• 100 accesses for Borrower tuples (first loop)

• 500 accesses for BookAuthor tuples (second loop)

• 600 accesses total

• The requires 600 * 10 ms = 6 seconds

• This is the best possible scenario, since every record
is only processed once

Using Indexes to Speed Up
Joins

• Example: Borrower ⋈ CheckedOut

• Assume:
• 2K Borrower tuples, 1K CheckedOut tuples

• 20 records per block: 100 and 50 blocks for each table,
respectively

• We cannot buffer either table entirely

• Without indexes, a nested block join takes 5050 or 5100
disk accesses
• Depends on which table is in the outer loop

Using Indexes to Speed Up
Joins

• Example: Borrower ⋈ CheckedOut

• Suppose we have index on Borrower.borrowerID
• We scan all 1000 CheckedOut records (50 blocks)

• Then, we use the index to match each with a Borrower record

• We only process 1000 CheckedOut records and 1000
Borrower records

Using Indexes to Speed Up
Joins

• Limitations:
• Each borrower may require a

separate disk access
• 50 accesses for CheckedOut
• 1000 accesses for Borrower

• If the index doesn't fit in memory,
traversing the index requires disk
accesses
• B+ Tree Indexes require more

accesses than Hashed Indexes

• Nevertheless, a major
improvement!

Temporary Indexes

• Indexes created and buffered for the purpose of a single
query and then discarded

• Suppose neither Borrower nor CheckedOut is indexed
• Borrower ⋈ CheckedOut might cause a temporary index to

be built on Borrower.borrowerID

• If an index entry takes ~10 bytes, entire index will be ~20K

• Index construction requires reading all 2K borrowers = 100
disk accesses

• Join itself costs up to 1050 disk accesses (see previous slide)

• Total of 1150 disk accesses

Merge Join

• Suppose both tables in a joined are stored in
ascending order by the join key

• Using a merge join, we can fetch each tuple once:
50 + 100 = 150 total disk accesses

Merge Join

get first tuple from Borrower;
get first tuple from CheckedOut;
while (we still have valid tuples from both relations) {
 if (Borrower.borrowerID == CheckedOut.borrowerID) {
 output one tuple to the result;
 get next tuple from CheckedOut;
 // We might have more checkouts for this borrower,
 // so keep current borrower tuple
 }
 else if (Borrower.borrowerID < CheckedOut.borrowerID)
 get next tuple from Borrower;
 else
 get next tuple from CheckedOut;
}

Order of Joins
• For multiple joins, performance can be greatly impacted by the

order of the joins

• Example: π last, first, authorName Borrower ⋈ BookAuthor ⋈ CheckedOut

• Assume:
• 2K Borrower, 1K CheckedOut, and 10K Author tuples
• Each book has an average of 2 authors

• Three ways to do the join operations:
A. (Borrower ⋈ BookAuthor) ⋈ CheckedOut
B. (BookAuthor ⋈ CheckedOut) ⋈ Borrower
C. (Borrower ⋈ CheckedOut) ⋈ BookAuthor

• Final number of tuples is the same, but intermediate joins create
temporary tables. Which order is most efficient?

Order of Joins

• Assume:
• 2K Borrower, 1K CheckedOut, and 10K Author tuples
• Each book has an average of 2 authors

• Three ways to do the (binary commutative) join operations:
A. (Borrower ⋈ BookAuthor) ⋈ CheckedOut
B. (BookAuthor ⋈ CheckedOut) ⋈ Borrower
C. (Borrower ⋈ CheckedOut) ⋈ BookAuthor

• Example:
A. Borrower and BookAuthor have no attributes in common, so a

cartesian product is formed. This results in a temporary table
with 20 million tuples!

Statistics and Query
Optimization

• Using statistics about database objects can help speed
up queries

• Maintaining statistics as the data in the database
changes is a manageable process

• Types of statistics
• Table statistics

• Column statistics

Table Statistics

• On a relation r:
• nr = number of tuples in the relation

• lr = size (in bytes) of a tuple in the relation

• fr = blocking factor, number of tuples per block

• br = number of blocks used by the relation

• Thus:
• fr = floor(block size / lr) if tuples do not span blocks

• br = ceiling(nr / fr) if tuples in r reside in a single file
and are not clustered with other relations

Table Statistics

Block 1 Block 2 Block 3

Tuple 1 Tuple 2 Tuple 3 Tuple 4 Tuple 5 Tuple 6

• The relation contains 6 tuples (nr=6)

• Each tuple occupies 200 bytes (lr=200)

• Each block holds 2 tuples (fr=2)

• The relation occupies 3 blocks (br=3)

Column Statistics

• On a column A, in relation r:

• V(A, r) = number of distinct values in the column
• If A is a superkey, then V(A, r) = nr

• If column A is indexed, V(A, r) s relatively easy to maintain

• Keep track of the count of entries in the index

• May also be useful to store a histogram of the relative
frequency of column values in different ranges

• May or may not have statistics on other columns

• The number of times each column value occurs can be
estimated by nr / V(A, r)

Example Statistics

V(A, r)

V(borrower_id, Borrower) = 2000

V(borrower_id, CheckedOut) = 100

V(callNo, CheckedOut) = 500

V(callNo, BookAuthor) = 5000

checked_out

call_number copy_number borrower_id date_due

borrower

borrower_id name

book_author

call_number author

Table nr lr

borrower 2000 58 bytes

checked_out 1000 74 bytes

book_author 10,000 100 bytes

Calculating the Size of a
Cartesian Product

• Cartesian product: r × s
• Number of tuples in join: nr × s = nr * ns

• Size of each tuple in join: lr × s = lr + ls

• Example: borrower × checked_out
• nborrower × checked_out

• lborrower × checked_out

Estimating the Size of a Join

• Natural join: r ⋈ s, where r and s have A in common
• Estimated number of tuples in join:

nr ⋈ s = ns * nr / max(V(A, r), V(A, s))

• Number of unique values: V(A, r ⋈ s) = min(V(A, r), V(A, s))
• Some tuples in the relation with the larger number of column values

do not join with any tuples in the other relation

• If r and s have no attributes in common, then a cartesian
product is performed

Example Join Estimation

• π name, author Borrower ⋈ BookAuthor ⋈ CheckedOut

• Which evaluation plan generates the fewest tuples in the
intermediate table?
A. (Borrower ⋈ BookAuthor) ⋈ CheckedOut

B. (BookAuthor ⋈ CheckedOut) ⋈ Borrower

C. (Borrower ⋈ CheckedOut) ⋈ BookAuthor

Rules of Equivalence

• Reordering the joins improved performance, without
changing the results!

• More generally, two formulations of a query are
"equivalent" if they produce the same set of results
• Tuples aren't necessarily in the same order

• The "rules of equivalence" describe when reordering
is allowed

• For a given query, a good DBMS will create several
"equivalent" evaluation plans and choose the most
efficient one

Rules of Equivalence

• Example: find the titles of all books written by
"Bruce Schneier"

• SELECT title
FROM book NATURAL JOIN book_author
WHERE author = "Bruce Schneier"

• "Equivalent" execution plans:
A. πtitle (σauthor = ‘Bruce Schneier’ (Book ⋈ BookAuthor))

B. πtitle (Book ⋈ (σauthor = ‘Bruce Schneier’ BookAuthor))

• "Equivalent" in terms of results, not performance!

Math Review

• Commutativity:
• A binary operation * is commutative if for	all	𝑥, 𝑦:
𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥

• Associativity
• A binary operation * is associative if for all 𝑥, 𝑦, 𝑧:
𝑥 ∗ 𝑦 ∗ 𝑧 = 𝑥 ∗ 𝑦 ∗ 𝑧

Rules of Equivalence

Rules of Equivalence

Rules of Equivalence

Rules of Equivalence

Push Selections Inward

• Do selections as early as possible
• Reduces (“flattens”) the number of records in the relation(s) being

joined

• Example:
• πtitle (σauthor = ‘Bruce Schneier’ (Book ⋈ BookAuthor))
• πtitle (Book ⋈ (σauthor = ‘Bruce Schneier’ BookAuthor))

• Sometimes this is not feasible:
• σ Borrower.name = BookAuthor.author Borrower × BookAuthor

• Alter the structure of the selection itself
• Find late checked out books that cost more than $20.00.
• σ purchasePrice > 20 ∧ dateDue < today Book ⋈ CheckedOut
• σ purchasePrice > 20 Book ⋈ σ dateDue < today CheckedOut

Push Projections Inward

• Do projections as early as possible
• Reduces (“narrows”) the number of columns in the relation(s)

being joined

• Example:
• π name, title, dateDue Borrower ⋈ CheckedOut ⋈ Book

• π name, title, dateDue Borrower ⋈
 (π borrowerID, title, dateDue CheckedOut ⋈ Book)

• Reduces the number of columns in the temporary table from the
intermediate join

