Concurrency Control

CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner
Gordon College

Practice Quiz: Query
Processing and Optimization

* Working with a neighbor:
Draw a precedence graph for

the transactions shown in the

table read A
read A

Determine whether the write A
transactions are conflict read A

serializable read B
read B

write B
write C

Agenda

Attendance Quiz
Locking Protocols

Other Serializability Approaches

Other Issues

Motivation for Concurrent
Processing

Effective use of system resources
* Do work on CPU while waiting for a disk access
* Do multiple disk accesses on multiple disks in parallel

Support multiple simultaneous database
users/sessions

Take advantage of 1dle time during interactive
transactions

Keep the database accessible during a long-running
transaction

Requirements for Concurrency

* Need to ensure the following for concurrent
transactions

* Serializability — equivalent to a serial schedule
* Maintains consistency

* Recoverability — a transaction cannot commit until any
transaction whose data it uses commits

 How are these requirements actually implemented?

Locking Protocols

Locks

A locking protocol 1s a set of rules which ensure that any schedule
developing over time is serializable

* More pragmatic than testing for serializability since future
transactions (usually) cannot be predicted

New database primitives

 Lock — exclude other transactions from accessing a certain data item
* Unlock — releases a predefined lock on a data item

Locks often persist until the end of a transaction

Locks are implicit to database operations
* No need to tell a database to lock an item; it knows when to do so
* This lecture shows locks explicitly to help illustrate them

Granularity of Locks

Database locking — the entire database is locked (create or drop database)

File locking — all objects in a file become unusable by other transactions
+ Used for growing, shrinking, or reorganizing files

* “Online” mode can cause this work to happen in the background and then be
switched into place once it completes

Database object locking — tables, indexes, etc.

+ Used when altering the object’s structure (via DDL statement)
* Adding a column to a table
* Rebuilding an index

Record (row) or field (column) locking — a single tuple or data item 1s locked
during a transaction

Block level locking — common because data is read and written in blocks

A transaction may lock not only the record it is using, but the other records on the
block as well

Shared Locks

Used when a transaction reads an item without changing it
Other transactions may also obtain shared locks on the item

Shared lock prevents the data item from being changed while
the transaction(s) read it

Example: read current account balance
lock-s(balance)

read(balance)

unlock(balance)

+ If the transaction is reading balances on multiple accounts, it
needs to obtain shared locks on each of them

Exclusive Locks

Used when a transaction writes an item (also allows for reading the item)

A transaction seeking an exclusive lock must wait until all other locks on the desired
item are released

No other transaction can obtain any kind of lock on an item while an exclusive lock is
held on it

» Exclusive lock remains in force until the transaction commits or rolls back

Read-modify-write operation
* Obtain an exclusive lock before reading the item OR
* Obtain a shared lock for the read, and then upgrade to an exclusive lock before the write

Example: post interest to account (without and with lock upgrading)
lock-x(balance) lock-s(balance)
read(balance) read(balance)
write(balance) upgrade(balance)
unlock(balance) write(balance)
unlock(balance)

Deadlock

* Problem that can arise with locking protocols between transactions

Transaction T; has a lock on resource R; and needs a lock on resource R, before it
can unlock R;

Transaction T, has a lock on resource R, and needs a lock on resource R; before it
can unlock R,

» Example: Transfer $50 from checking to savings while printing total of account
balances

Transfer (T,) Balance Inquiry (T,)

lock-x(checking balance)
read(checking balance)
calculate new balance = old — 50
write(checking balance)
lock-s(savings balance)
read(savings balance)
lock-s(checking balance) — must wait

lock-x(savings balance) — must wait

Dealing with Deadlock

* Approaches

Deadlock Prevention — design a scheme that stops deadlock from ever
occurring (not always possible)

Deadlock Avoidance — Delay any lock which could lead to deadlock
(Requires some advance knowledge of how transactions will behave)

Deadlock Detection and Recovery — Allow deadlock, and when it
occurs, rollback one of the transactions and restart it after the other
proceeds past the point of deadlock

 Most DBMS’s use deadlock detection and recovery

Databases usually have lots of small transactions, decreasing the
probability of deadlock

» Databases need to support rollback anyway
Not a good approach to deadlock at the OS level (high rollback cost)

Locking by Itself 1s not

Enough
Transfer (T)

lock-s(savings balance)
read savings balance (S)

lock-x(checking balance)

read checking balance (C)

write checking balance (C-50)

unlock(checking balance) lock-s(checking balance)
read savings balance (C-50)
unlock(savings balance)
unlock(checking balance)

lock-x(savings balance)

read savings balance (S)

write savings balance (S+50)

unlock(savings balance)

« Each transaction obtains appropriate locks

But there 1s still an error in the Inquiry transaction’s balance total

Two-Phase Locking Protocol

* Governs the order in which transactions acquire and
release locks

* Requires that a transaction must acquire all the locks
it needs before releasing any of them

* Growth phase — transaction acquires locks, but may not
release any

* Includes upgrading locks

* Shrinking phase — transaction may release locks, but may
not acquire any more

* Includes downgrading locks (i.e. from exclusive to shared)

Two-Phase Locking and
Transaction Serializability

Two-phase locking can be used to ensure serializability
Extension to precedence graph (used to test for conflict serializability)

Directed edge for a precedes relationship

T, precedes T, (T; — T,) if in some schedule T, acquires a lock on some
resource R before T, acquires an incompatible lock on R

If the precedence graph is acyclic, the schedule is serializable

Example: transfer (T;) and inquiry (T,)
T, locks checking balance before T,
T, locks savings balance before T,

Cycle in graph, so not
serializable

Two-Phase Locking and
Transaction Recoverability

« Extensions to two-phase locking protocol

Strict two-phase protocol requires that all exclusive locks be held
until a transaction commits

Rigorous two-phase protocol requires that all locks (shared or
exclusive) be held until a transaction commuits

* Both of these variants guarantee cascade-less recoverability,
because no transaction can read data written by an
uncommitted transaction

* Both variants are widely used along with some deadlock
detection and recovery mechanism

Since two-phase locking can lead to deadlock

Other Serializability
Approaches and Issues

Other Methods to Ensure
Serializability

* Timestamps
e Validation

e Multiversion Schemes

Timestamps

Each transaction is issued a unique serial number/clock reading when it starts

+ If an old transaction T; has time-stamp TS(T;), a new transaction T, is assigned
time-stamp TS(T)) such that TS(T;) <TS(T))

Timestamps ensure that a transaction schedule is equivalent to a serial
schedule

« T, completes before T, because TS(T;) < TS(T,)
+ Stops reads or writes that would lead to a non-serializable schedule (like locking)

Each data item Q maintains two timestamp values

- W-timestamp(Q) — largest timestamp of any transaction that successfully wrote to Q
- R-timestamp(Q) — largest timestamp of any transaction that successfully read Q
- Conflicting read and write operations are executed in timestamp order

Can have cascading rollbacks

Validation

Allow transaction to read and write freely, but before
1t commits, ensure the outcome 1s serializable

* Optimistic concurrency control — transaction fully
executes “hoping” that validation goes well

Allows higher levels of concurrency

* Good if most transactions are read-only and do not
interfere with each other

Multiversion Schemes

Multiversion schemes keep old versions of data item to increase
concurrency.

Multiversion Timestamp Ordering
Multiversion Two-Phase Locking

Each successful write results in the creation of a new version of the data
item written.

The old version(s) also retained
Use timestamps to label versions.

When a read(Q) operation is issued, select an appropriate version of Q

based on the timestamp of the transaction, and return the value of the
selected version.

reads never have to wait as an appropriate version is returned
immediately.

Requires extra storage for versioned tuples and versioning data

Other Issues

* Deletes, Inserts, and Phantom Rows
* Weak Levels of Consistency

* Locking and Index Structures

Deletes and Inserts

Inserts and deletes are like write operations (with regard to an entire
TOW)

Consider the following query:
select count(*) from checked_out where borrower_id = 12345

What happens if a concurrent transaction does an insert or delete of a
row with borrower_id = 123457

« If the operation is “ahead” of the select, it impacts the count

 If the operation is “behind” the select, it does not impact the count
This phantom row 1s a problem.

Solution: make doing an insert or delete a lockable operations
Insert/delete obtains an exclusive lock on this ability before executing

Count operation obtains a shared lock to prevent other rows from being
inserted or deleted while it runs

Does not lock the whole table — other transactions can continue to run

Weak Levels of Consistency

* Ensuring serializable schedules takes overhead to either
Require transactions to wait for lock(s) to release before proceeding

Roll back transactions performing operations that would lead to a non-
serializable schedule (and potentially restart them)

« Serializability enforcement can be relaxed if an approximate answer 1s
close enough

Different levels of weakened serializability supported by SQL

* Serializable: enforces full serializability

. R¢1})1eatab1e read: allows only committed records to be read, and repeating a read

within a single transaction should return the same value (Other transactions cannot

change the value between successive reads)
However, phantom rows are still possible
» T1 may see some records inserted by T2, but may not see others inserted by T2

Read committed: only committed records can be read, and repeating a read within
a single transaction might return different values (if some other transaction
changes the data item)

* Read uncommitted: allows even uncommitted data to be read (dirty read)

PostgreSQL Isolation Levels

Table 13.1. Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read Serialization Anomaly

Read uncommitted Allowed, but notin PG Possible Possible Possible

Read committed Not possible Possible Possible Possible

Repeatableread Not possible Not possible Allowed, but not in PG Possible

Serializable Not possible Not possible Not possible Not possible

Read committed is the default in PostgreSQL

https://www.postgresqgl.org/docs/13/transaction-iso.html

https://www.postgresql.org/docs/13/transaction-iso.html

L.ocks and Index Structures

 What happens to indexes when the data they reference
gets locked

A transaction looking up data via an index (e.g. read) needs
shared locks on all index leaf nodes that it uses

* A transaction doing inserts, updates, or deletes (e.g. write)
needs exclusive locks on all leaf nodes affected by the
operation

 Also needs to update all pertinent indexes

Indexes are accessed very often, so some index locking
protocols do not require two phases

* Accuracy is still required
* Need for speed trumps serializability

