
Concurrency Control
CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner

Gordon College

Practice Quiz: Query
Processing and Optimization

• Working with a neighbor:
• Draw a precedence graph for

the transactions shown in the
table

• Determine whether the
transactions are conflict
serializable

T1 T2 T3

read A

write C

read A
write A

read B
read A

read B
write B
write C

Agenda

• Attendance Quiz

• Locking Protocols

• Other Serializability Approaches

• Other Issues

Motivation for Concurrent
Processing

• Effective use of system resources
• Do work on CPU while waiting for a disk access
• Do multiple disk accesses on multiple disks in parallel

• Support multiple simultaneous database
users/sessions

• Take advantage of idle time during interactive
transactions

• Keep the database accessible during a long-running
transaction

Requirements for Concurrency

• Need to ensure the following for concurrent
transactions
• Serializability – equivalent to a serial schedule
• Maintains consistency

• Recoverability – a transaction cannot commit until any
transaction whose data it uses commits

• How are these requirements actually implemented?

Locking Protocols

Locks

• A locking protocol is a set of rules which ensure that any schedule
developing over time is serializable
• More pragmatic than testing for serializability since future

transactions (usually) cannot be predicted

• New database primitives
• Lock – exclude other transactions from accessing a certain data item
• Unlock – releases a predefined lock on a data item

• Locks often persist until the end of a transaction

• Locks are implicit to database operations
• No need to tell a database to lock an item; it knows when to do so
• This lecture shows locks explicitly to help illustrate them

Granularity of Locks
• Database locking – the entire database is locked (create or drop database)

• File locking – all objects in a file become unusable by other transactions
• Used for growing, shrinking, or reorganizing files
• “Online” mode can cause this work to happen in the background and then be

switched into place once it completes

• Database object locking – tables, indexes, etc.
• Used when altering the object’s structure (via DDL statement)
• Adding a column to a table
• Rebuilding an index

• Record (row) or field (column) locking – a single tuple or data item is locked
during a transaction

• Block level locking – common because data is read and written in blocks
• A transaction may lock not only the record it is using, but the other records on the

block as well

Shared Locks

• Used when a transaction reads an item without changing it

• Other transactions may also obtain shared locks on the item

• Shared lock prevents the data item from being changed while
the transaction(s) read it

• Example: read current account balance
lock-s(balance)
read(balance)
unlock(balance)
• If the transaction is reading balances on multiple accounts, it

needs to obtain shared locks on each of them

Exclusive Locks
• Used when a transaction writes an item (also allows for reading the item)

• A transaction seeking an exclusive lock must wait until all other locks on the desired
item are released

• No other transaction can obtain any kind of lock on an item while an exclusive lock is
held on it
• Exclusive lock remains in force until the transaction commits or rolls back

• Read-modify-write operation
• Obtain an exclusive lock before reading the item OR
• Obtain a shared lock for the read, and then upgrade to an exclusive lock before the write

• Example: post interest to account (without and with lock upgrading)
lock-x(balance) lock-s(balance)
read(balance) read(balance)
write(balance) upgrade(balance)
unlock(balance) write(balance)
 unlock(balance)

Deadlock
• Problem that can arise with locking protocols between transactions

• Transaction T1 has a lock on resource R1 and needs a lock on resource R2 before it
can unlock R1

• Transaction T2 has a lock on resource R2 and needs a lock on resource R1 before it
can unlock R2

• Example: Transfer $50 from checking to savings while printing total of account
balances

Transfer (T1) Balance Inquiry (T2)

lock-x(checking balance)
read(checking balance)
calculate new balance = old – 50
write(checking balance)

lock-x(savings balance) – must wait

lock-s(savings balance)
read(savings balance)
lock-s(checking balance) – must wait

Dealing with Deadlock
• Approaches
• Deadlock Prevention – design a scheme that stops deadlock from ever

occurring (not always possible)

• Deadlock Avoidance – Delay any lock which could lead to deadlock
(Requires some advance knowledge of how transactions will behave)

• Deadlock Detection and Recovery – Allow deadlock, and when it
occurs, rollback one of the transactions and restart it after the other
proceeds past the point of deadlock

• Most DBMS’s use deadlock detection and recovery
• Databases usually have lots of small transactions, decreasing the

probability of deadlock

• Databases need to support rollback anyway

• Not a good approach to deadlock at the OS level (high rollback cost)

Locking by Itself is not
Enough

• Each transaction obtains appropriate locks

• But there is still an error in the Inquiry transaction’s balance total

Transfer (T1) Balance Inquiry (T2)

lock-x(checking balance)
read checking balance (C)
write checking balance (C-50)
unlock(checking balance)

lock-x(savings balance)
read savings balance (S)
write savings balance (S+50)
unlock(savings balance)

lock-s(savings balance)
read savings balance (S)

lock-s(checking balance)
read savings balance (C-50)
unlock(savings balance)
unlock(checking balance)

Two-Phase Locking Protocol

• Governs the order in which transactions acquire and
release locks

• Requires that a transaction must acquire all the locks
it needs before releasing any of them
• Growth phase – transaction acquires locks, but may not

release any
• Includes upgrading locks

• Shrinking phase – transaction may release locks, but may
not acquire any more
• Includes downgrading locks (i.e. from exclusive to shared)

Two-Phase Locking and
Transaction Serializability

• Two-phase locking can be used to ensure serializability

• Extension to precedence graph (used to test for conflict serializability)

• Directed edge for a precedes relationship

• T1 precedes T2 (T1 → T2) if in some schedule T1 acquires a lock on some
resource R before T2 acquires an incompatible lock on R

• If the precedence graph is acyclic, the schedule is serializable

• Example: transfer (T1) and inquiry (T2)

• T1 locks checking balance before T2
• T2 locks savings balance before T1
• Cycle in graph, so not

serializable

Two-Phase Locking and
Transaction Recoverability

• Extensions to two-phase locking protocol
• Strict two-phase protocol requires that all exclusive locks be held

until a transaction commits
• Rigorous two-phase protocol requires that all locks (shared or

exclusive) be held until a transaction commits

• Both of these variants guarantee cascade-less recoverability,
because no transaction can read data written by an
uncommitted transaction

• Both variants are widely used along with some deadlock
detection and recovery mechanism
• Since two-phase locking can lead to deadlock

Other Serializability
Approaches and Issues

Other Methods to Ensure
Serializability

• Timestamps

• Validation

• Multiversion Schemes

Timestamps
• Each transaction is issued a unique serial number/clock reading when it starts

• If an old transaction T1 has time-stamp TS(T1), a new transaction T2 is assigned
time-stamp TS(T2) such that TS(T1) <TS(T2)

• Timestamps ensure that a transaction schedule is equivalent to a serial
schedule
• T1 completes before T2 because TS(T1) < TS(T2)
• Stops reads or writes that would lead to a non-serializable schedule (like locking)

• Each data item Q maintains two timestamp values
• W-timestamp(Q) – largest timestamp of any transaction that successfully wrote to Q
• R-timestamp(Q) – largest timestamp of any transaction that successfully read Q
• Conflicting read and write operations are executed in timestamp order

• Can have cascading rollbacks

Validation

• Allow transaction to read and write freely, but before
it commits, ensure the outcome is serializable
• Optimistic concurrency control – transaction fully

executes “hoping” that validation goes well

• Allows higher levels of concurrency
• Good if most transactions are read-only and do not

interfere with each other

Multiversion Schemes
• Multiversion schemes keep old versions of data item to increase

concurrency.
• Multiversion Timestamp Ordering
• Multiversion Two-Phase Locking

• Each successful write results in the creation of a new version of the data
item written.
• The old version(s) also retained
• Use timestamps to label versions.

• When a read(Q) operation is issued, select an appropriate version of Q
based on the timestamp of the transaction, and return the value of the
selected version.

• reads never have to wait as an appropriate version is returned
immediately.

• Requires extra storage for versioned tuples and versioning data

Other Issues

• Deletes, Inserts, and Phantom Rows

• Weak Levels of Consistency

• Locking and Index Structures

Deletes and Inserts
• Inserts and deletes are like write operations (with regard to an entire

row)

• Consider the following query:
select count(*) from checked_out where borrower_id = 12345
• What happens if a concurrent transaction does an insert or delete of a

row with borrower_id = 12345?
• If the operation is “ahead” of the select, it impacts the count
• If the operation is “behind” the select, it does not impact the count
• This phantom row is a problem.

• Solution: make doing an insert or delete a lockable operations
• Insert/delete obtains an exclusive lock on this ability before executing
• Count operation obtains a shared lock to prevent other rows from being

inserted or deleted while it runs
• Does not lock the whole table – other transactions can continue to run

Weak Levels of Consistency

• Ensuring serializable schedules takes overhead to either
• Require transactions to wait for lock(s) to release before proceeding
• Roll back transactions performing operations that would lead to a non-

serializable schedule (and potentially restart them)

• Serializability enforcement can be relaxed if an approximate answer is
close enough
• Different levels of weakened serializability supported by SQL
• Serializable: enforces full serializability
• Repeatable read: allows only committed records to be read, and repeating a read

within a single transaction should return the same value (Other transactions cannot
change the value between successive reads)
• However, phantom rows are still possible
• T1 may see some records inserted by T2, but may not see others inserted by T2

• Read committed: only committed records can be read, and repeating a read within
a single transaction might return different values (if some other transaction
changes the data item)

• Read uncommitted: allows even uncommitted data to be read (dirty read)

PostgreSQL Isolation Levels

https://www.postgresql.org/docs/13/transaction-iso.html

Read committed is the default in PostgreSQL

https://www.postgresql.org/docs/13/transaction-iso.html

Locks and Index Structures

• What happens to indexes when the data they reference
gets locked
• A transaction looking up data via an index (e.g. read) needs

shared locks on all index leaf nodes that it uses
• A transaction doing inserts, updates, or deletes (e.g. write)

needs exclusive locks on all leaf nodes affected by the
operation
• Also needs to update all pertinent indexes

• Indexes are accessed very often, so some index locking
protocols do not require two phases
• Accuracy is still required
• Need for speed trumps serializability

