
Database Architectures
CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner

Gordon College

Practice Quiz:
Locking Protocols

• Working with a neighbor:
• Describe the difference between shared and exclusive locks

• Describe the two phases of the "two-phase locking protocol"

• Identify the default isolation level used by PostgreSQL:

Today you will learn…

• How parallelism is used to increase database
performance

• Some approaches used in distributed databases

Agenda

• Parallelism

• Distributed Databases

• Introduction to NoSQL

Parallelism

We Need More Power!

• Servers need to support many clients

• CPU and disk bottlenecks can be parallelized

• Old approach: acquire a single fast, expensive computer
(e.g., a mainframe)
• Not sufficiently scalable for many workloads

• Modern approach: acquire a lot of commodity hardware
• Scaling is easier: buy more servers, expand the RAID array

Speed Up

• Make individual transactions process faster

• Multiple CPUs (and disks) can cooperate to complete a
single expensive transaction

Scale Up

• Handle more work in the same amount of time

• Transaction scale up: increase the volume of transactions
• Each CPU handles its own transaction

• Process more transactions per unit of time

• For example: handling more website visitors

• Batch scale up: increase the size of transactions
• CPUs cooperate to complete larger transactions

• For example: as the database grows, calculating analytics requires
more processing power

Shared Resources that Enable
Parallelism

• Shared memory: multiple CPUs sharing common memory
(while also having their own cache/private local memory)

• Shared disk (cluster): multiple CPUs share a disk system

• Shared nothing: each CPU has its own memory and disk

I/O Parallelism

I/O Parallelism

• Reduce the time required to retrieve relations from disk by
partitioning the relations on multiple disks.

• Horizontal partitioning: tuples of a relation are divided
among many disks such that each tuple resides on one disk.

• Definitions:

• Point query: query to look up a single tuple (i.e. age = 25)

• Range query: query to look up a range of values
(i.e. age > 25 and age < 60)

Partitioning Techniques:
Round Robin

• Assume we have n disks

• Round-robin: Send the Ith tuple inserted in the relation to disk
i mod n.

• Good for sequential reads of entire table

• Even distribution of data over disks

• Range queries are expensive

Partitioning Techniques:
Hash Partitioning

• Assume we have n disks

• Hash partitioning: Choose one or more partitioning
attribute(s) and apply a hashing function to their values that
produces a value within the range of 0…n – 1 disks
• Good for sequential or point queries based on partition

attribute(s)

• Range queries are expensive

Partitioning Techniques:
Range Partitioning

• Assume we have n disks

• Range partitioning: Choose a partitioning attribute, and
divide its values into ranges, tuples that match a given range
go in the corresponding partition
• Clusters data by partition value (i.e. by date range)

• Good for sequential access and point queries on partitioning
attribute

• Supports range queries on partitioning attribute

Potential Problems

• Skew: non-uniform distribution of database records
• Hash partitioning: bad hash function (not uniform or random)

• Range partitioning: lots of records going in the same partition
(web traffic/orders stored in a date-partitioned table, more during
the shopping season)

Parallelism Example

Distributed Databases

One Database, Multiple
Locations

• Distributed database is stored on several computers located
at multiple physical sites

• Types of distributed database
• Homogeneous: all systems run the same brand of DBMS

software on the same OS and hardware
• Coordination is easier in this setup

• Heterogeneous: system run different DBMS on potentially
different OS and hardware

Distributed Database
Examples

East Coast West Coast Europe

Advantages of Distributed
Systems

• Sharing of data generated at different sites

• Local control and autonomy at each site

• Reliability and availability
• If one site fails, there may be a performance reduction and some

data may become unavailable, but processing can continue

• Contrast with a failure of a centralized system

• Potentially faster query response times
• Geographically closer data can be accessed with less latency

• Incremental system maintenance and upgrades

Disadvantages of Distributed
Systems

• Cost and time required to communicate between sites
• Operations involving multiple sites are slower because data

must be transferred between them

• Increased complexity

• Difficult to debug

Distributed System Challenges

X

Distributed System Concepts

• Fragmentation

• Replication

• Consensus protocols:
• Two-Phase Commit

• Raft

Fragmentation

• Splitting a table up between sites (AKA, sharding)
• Horizontal fragmentation

• Vertical Fragmentation

• Fragmentation in both directions

• Mostly applicable to larger organizations
• Requires more hardware

• More challenging to manage

Horizontal Fragmentation

• Store different records (rows) at distinct sites
• Records most pertinent to each site (e.g., US users, European

users, etc.)

• Specified by relational algebra selection operation

• Entire table can be reconstructed by a union of records at all
sites

• Queries to local rows are inexpensive, but queries involving
remote records have high communication cost

Vertical fragmentation

• Store different columns at distinct sites
• Give access only to data that is needed at site

• Restrict access to sensitive or unnecessary data at sites

• Selectively replicate portions of a table
• Replicate columns frequently used at remote sites for quicker access

• Specified by projection operation

• Entire table can be reconstructed by a natural join on the
fragments
• Requires (primary) key to be present in each fragment
• Or some system-generated row id (not used by end users)

Fragmentation Example

Replication

• Storing the same data at different locations
• Improves performance: local access to replicated data is more

efficient than working with a remote copy

• Improves availability: if the local copy fails, the system may still
be able to use a remote copy

• Can be combined with fragmentation

• Issues from data redundancy
• Requires extra storage

• Copies must be kept in sync

Choosing whether to Fragment,
Replicate, and/or Centralize

• Use replication for small relations needed at multiple sites

• Use fragmentation for large relations when data is
associated with particular sites

• Use centralization for large relations when data is not
associated with particular sites
• In this case, communication costs would be higher for

fragmentation, as queries would have to access numerous
remote sites instead of just the central site

Data Transparency

• Degree to which a user is unaware of how and where data is
stored in distributed system

• Types of data transparency:
• Fragmentation transparency
• Replication transparency
• Location transparency

• Advantages
• Allows data to be moved without user needing to know
• Allows query planner to determine the most efficient way to get data
• Allows access of replicated data from another site if local copy is

unavailable

Querying Distributed Data

• Queries and transactions can be either
• Local: all data is stored at current site

• Global: it needs data from one or more remote sites
• Transaction might originate locally and need data from elsewhere

• Transaction might originate elsewhere, and need data stored locally

• Planning strategies for global queries is difficult
• Minimize data transferred between sites

• Use statistical information to assist

Global Query Strategies
• Execute data reducing operations before transferring data between

sites
• Produce results smaller than starting data
• Selection, projection, intersection, aggregation (count, sum, etc.)
• Sometimes natural and theta join, union

• Execute data expanding operations after transferring data between
sites
• Produce results larger than starting data
• Cartesian join, natural and theta join (sometimes)

• Semijoin -- |X
• r1 |X r2 = π R1 (r1 |X| r2)
• Transfer only those tuples in r1 which match in the natural join with r2

between sites

Global Query Library
Example

• Given
• checkout relation stored locally
• (Large) book_info relation (call_no, title, etc.) stored centrally

• Find details (including book titles) of all local checkouts that have
just gone overdue

• Strategies
A. Copy entire book_info relation to the local site and do the join there
• Not optimal – copying a very large relation for only a few matching

tuples

B. Send local site only those book tuples relevant to the query
• Semijoin -- book_info |X checkout

• Data reducing operations at local and central sites

The Challenge of Modifying
Distributed Data

• Ensure that updates to data stored at multiple sites get committed or
rolled back on each site
• Avoid one site committing an update and another aborting it

• Ensure that replicated data is consistently updated on all replicas
• Updates to different replicas do not occur at the same time
• Avoid inconsistencies arising from data read from a replica that has not

been updated yet

• Partial failure: one or more sites down due to hardware, software, or
communication link failure
• What happens when this failure occurs in the middle of an update

operation?
• How to deal with corrupted or lost messages?

Two-Phase Commit Protocol
(2PC)

• Ensure that either all updates commit or none commit
• Here, “updates” = changes to data (inserts, updates, deletes, etc.)

• One site (usually the site originating the update) acts as the
coordinator

• Each site completes work on the transaction, becomes partially
committed, and notifies the coordinator

• Once coordinate receives completion messages from all sites, it
can begin the commit protocol
• If coordinator receives a failure message from one or more sites, it

instructs all sites to abort the transaction
• If the coordinator does not receive any message from a site in a

reasonable amount of time, it instructs all sites to abort the transaction
• Site or communication link might have failed during the transaction

2PC Phase 1:
Obtaining a Decision

• Coordinator writes a <prepare T> entry to its log and forces all log
entries to stable storage

• Coordinator sends a prepare-to-commit message to all participating
sites

• Ideally, each site writes a <ready T> entry to its log, forces all log
entries to stable storage, and sends a ready message to the
coordinator
• If a site needs to abort the transaction, it writes a <no T> entry to its

log, forces all entries to stable storage, and sends an abort message to the
coordinator

• Once a site sends a ready message to the coordinator, it gives up its right
to abort the transaction
• It must commit if/when the coordinator instructs it to

2PC Phase 2:
Recording the Decision

• Coordinator waits for each site to respond to the prepare-to-commit message

• If any site responds negatively or fails to respond, coordinator writes an <abort T> entry
to its log and sends an abort message to all sites

• If all responses are positive, coordinator writes a <commit T> entry to its log and sends a
commit message to all sites

• At this point, the coordinator’s decision is final
• 2PC protocol will work to carry it out even if a site fails

• As each site receives the coordinator’s message, it either commits or aborts the transaction,
makes an appropriate log entry, and sends an acknowledge message back to the
coordinator

• Once the coordinator receives acknowledge messages from all sites, it writes a <complete
T> entry to its log

• If a site fails to send an acknowledge message, the coordinator may resend its message to it
• Ultimately, the site is responsible to find and carry out the coordinator’s decision

2PC: If a Remote Site or
Communication Link Fails…

• …before sending its ready message, the transaction will fail
• When the site comes back up, it may send its ready message, but the

coordinator will ignore this
• Coordinator will send periodic abort messages to site so that it will

eventually acknowledge the failure and return to a consistent state
• Same scenario as above if ready message is lost in transit

• …after the coordinator receives the ready message
• The site must figure out what happened to the transaction once it recovers

(via a message from coordinator or asking some other site) and take
appropriate action

• …after the site receives the coordinator’s final decision
• The site will know what to do after it recovers (from commit or abort entry

in its log)
• Takes appropriate action and sends an acknowledgement message to the

coordinator

2PC: If the Coordinator
Fails…

• …before it sends a final decision
• Sites that already sent ready messages have to wait for coordinator to

recover before deciding what to do with the transaction
• Can lead to blocking – locked data items unavailable until coordinator

recovers
• Sites that have not sent ready message can time out and abort the

transaction

• …after sending a final decision to at least one site, it will figure out
what to do after it recovers based on its log
• <start T> but no <prepare T> à abort transaction
• <prepare T> but no <commit T> à find out status of sites or abort

transaction
• <abort T> or <commit T>, but no <complete T> à restart sending of

commit/abort messages and waiting for acknowledgements

• Sites may be able to find out what to do from each other when the
coordinator is down

Updating Replicated Data

• All replicas of a given data item must be kept synchronized
when updates occur

• Approach: simultaneous updates of all replicas for each
transaction
• Ensures consistency across replicas

• Slows down update transactions and breaks replication
transparency

• What happens if a replica is unreachable during an update?

Primary Copy

• Designate a primary copy of the data at some site
• Reads can happen on any replica, but updates happen on primary copy

first
• Primary copy’s site sends updates to replica sites
• Immediately after each update or periodically (if eventual consistency is

OK)
• Resending updates periodically to sites that are down

• Secondary copies might be a little out-of-date, so critical reads
should go to the primary copy

• What happens when the site with the primary copy fails?
• Data becomes unavailable for update until the primary copy site is

recovered
• Or, a secondary copy can become a temporary primary copy
• Could lead to inconsistencies when trying to reactivate the real primary

copy

Further Reading

• What is Distributed SQL? An Evolution of the Database
• CockroachDB (open source, developed by former Google

engineers)

• Google F1 (proprietary) and Spanner (proprietary, offered by
Google Cloud)

• Amazon Aurora (proprietary, offered by AWS)

• Distributed functionality for traditional RDBMS's:
• Features of standard PostgreSQL and Citus for PostgreSQL

• Features of standard MySQL and MySQL Cluster

https://www.cockroachlabs.com/blog/what-is-distributed-sql/
https://en.wikipedia.org/wiki/CockroachDB
https://research.google/pubs/pub41344/
https://research.google/pubs/pub39966/
https://en.wikipedia.org/wiki/Amazon_Aurora
https://www.postgresql.org/docs/13/high-availability.html
https://www.citusdata.com/blog/2021/09/17/citus-10-2-extension-to-postgres-whats-new/
https://dev.mysql.com/doc/refman/5.6/en/replication.html
https://en.wikipedia.org/wiki/MySQL_Cluster

