Database Architectures

CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner
Gordon College

Practice Quiz:
Locking Protocols

* Working with a neighbor:
» Describe the difference between shared and exclusive locks
 Describe the two phases of the "two-phase locking protocol"
» Identify the default i1solation level used by PostgreSQL.:

Table 13.1. Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read Serialization Anomaly
Read uncommitted Allowed, but notin PG Possible Possible Possible
Read committed Not possible Possible Possible Possible
Repeatableread Not possible Not possible Allowed, but not in PG Possible

Serializable Not possible Not possible Not possible Not possible

Today you will learn...

* How parallelism 1s used to increase database
performance

* Some approaches used 1n distributed databases

Agenda

e Parallelism
e Distributed Databases

e Introduction to NoSQL

Parallelism

We Need More Power!

Servers need to support many clients
CPU and disk bottlenecks can be parallelized

Old approach: acquire a single fast, expensive computer
(e.g., a mainframe)

 Not sufficiently scalable for many workloads

Modern approach: acquire a lot of commodity hardware
» Scaling 1s easier: buy more servers, expand the RAID array

Speed Up

* Make individual transactions process faster

* Multiple CPUs (and disks) can cooperate to complete a
single expensive transaction

Scale Up

« Handle more work 1in the same amount of time

* Transaction scale up: increase the volume of transactions
- Each CPU handles its own transaction
* Process more transactions per unit of time

* For example: handling more website visitors

« Batch scale up: increase the size of transactions
» CPUs cooperate to complete larger transactions

* For example: as the database grows, calculating analytics requires
more processing power

Shared Resources that Enable
Parallelism

* Shared memory: multiple CPUs sharing common memory
(while also having their own cache/private local memory)

* Shared disk (cluster): multiple CPUs share a disk system

* Shared nothing: each CPU has its own memory and disk

I1/0 Parallelism

I/0 Parallelism

* Reduce the time required to retrieve relations from disk by
partitioning the relations on multiple disks.

* Horizontal partitioning: tuples of a relation are divided
among many disks such that each tuple resides on one disk.

* Definitions:
» Point query: query to look up a single tuple (i.e. age = 25)

- Range query: query to look up a range of values
(i.e. age > 25 and age < 60)

Partitioning Techniques:
Round Robin

e Assume we have 7 disks

e Round-robin: Send the I™ tuple inserted in the relation to disk
i mod n.

* Good for sequential reads of entire table
- Even distribution of data over disks

- Range queries are expensive

Partitioning Techniques:
Hash Partitioning

e Assume we have 7 disks

« Hash partitioning: Choose one or more partitioning

attribute(s) and apply a hashing function to their values that
produces a value within the range of 0...n — 1 disks

* Good for sequential or point queries based on partition
attribute(s)

- Range queries are expensive

Partitioning Techniques:
Range Partitioning

e Assume we have 7 disks

* Range partitioning: Choose a partitioning attribute, and
divide 1ts values into ranges, tuples that match a given range
go 1n the corresponding partition

* Clusters data by partition value (i.e. by date range)

* Good for sequential access and point queries on partitioning
attribute

* Supports range queries on partitioning attribute

Potential Problems

* Skew: non-uniform distribution of database records
- Hash partitioning: bad hash function (not uniform or random)

* Range partitioning: lots of records going in the same partition
(web traffic/orders stored in a date-partitioned table, more during
the shopping season)

Parallelism Example

Web Server

Load Balancer

Web Server

Database Server

Web Server

|

RAID Array

Web Server

Distributed Databases

One Database, Multiple
Locations

* Distributed database 1s stored on several computers located
at multiple physical sites

* Types of distributed database

- Homogeneous: all systems run the same brand of DBMS
software on the same OS and hardware

* Coordination is easier in this setup

- Heterogeneous: system run different DBMS on potentially
different OS and hardware

Distributed Database
Examples

DB Server DB Server DB Server DB Server

~ | |

RAID Array RAID Array RAID Array

East Coast West Coast

Advantages of Distributed
Systems

Sharing of data generated at different sites
Local control and autonomy at each site

Reliability and availability

- If one site fails, there may be a performance reduction and some
data may become unavailable, but processing can continue

* Contrast with a failure of a centralized system

Potentially faster query response times

* Geographically closer data can be accessed with less latency

Incremental system maintenance and upgrades

Disadvantages of Distributed
Systems

Cost and time required to communicate between sites

* Operations involving multiple sites are slower because data
must be transferred between them

Increased complexity

Difficult to debug

Distributed System Challenges

DB Server 1

DB Server 6

DB Server 5 DB Server 3

DB Server 4

Distributed System Concepts

* Fragmentation
* Replication

« Consensus protocols:

* Two-Phase Commit
* Raft

Fragmentation

» Splitting a table up between sites (AKA, sharding)
* Horizontal fragmentation
* Vertical Fragmentation

- Fragmentation in both directions

* Mostly applicable to larger organizations
* Requires more hardware
* More challenging to manage

Horizontal Fragmentation

Store different records (rows) at distinct sites

* Records most pertinent to each site (e.g., US users, European
users, etc.)

Specified by relational algebra selection operation

Entire table can be reconstructed by a union of records at all
sites

Queries to local rows are 1nexpensive, but queries involving
remote records have high communication cost

Vertical fragmentation

Store different columns at distinct sites
* Give access only to data that is needed at site
» Restrict access to sensitive or unnecessary data at sites

 Selectively replicate portions of a table

+ Replicate columns frequently used at remote sites for quicker access
Specified by projection operation

Entire table can be reconstructed by a natural join on the
fragments

* Requires (primary) key to be present in each fragment
* Or some system-generated row id (not used by end users)

Fragmentation Example

General Personnel Salary Job History
Information Information Information

Eastern Division Eastern Division
Employees - Employees -

Stored at Eastern Stored at Corporate HQ
Division office

Central All 1
Division / Central Division Fanployees
Corporate HQ Employees Stored at
Corporate HQ

Western Division Western Division
Employees - Employees -

Western
Division Stored at Western Stored at Corporate HQ
Division office

Replication

* Storing the same data at different locations

- Improves performance: local access to replicated data is more
efficient than working with a remote copy

- Improves availability: if the local copy fails, the system may still
be able to use a remote copy

* (Can be combined with fragmentation

* Issues from data redundancy
* Requires extra storage

+ Copies must be kept in sync

Choosing whether to Fragment,
Replicate, and/or Centralize

Use replication for small relations needed at multiple sites

Use fragmentation for large relations when data 1is
associated with particular sites

Use centralization for large relations when data 1s not
associated with particular sites

In this case, communication costs would be higher for
fragmentation, as queries would have to access numerous
remote sites instead of just the central site

Data Transparency

Degree to which a user 1s unaware of how and where data is
stored 1in distributed system

Types of data transparency:
+ Fragmentation transparency
* Replication transparency

* Location transparency

Advantages
- Allows data to be moved without user needing to know
- Allows query planner to determine the most efficient way to get data

+ Allows access of replicated data from another site if local copy is
unavailable

Querying Distributed Data

* Queries and transactions can be either
» Local: all data is stored at current site
« Global: it needs data from one or more remote sites

* Transaction might originate locally and need data from elsewhere
» Transaction might originate elsewhere, and need data stored locally

* Planning strategies for global queries 1s difficult
* Minimize data transferred between sites
» Use statistical information to assist

Global Query Strategies

Execute data reducing operations before transferring data between
sites

* Produce results smaller than starting data

* Selection, projection, intersection, aggregation (count, sum, etc.)
* Sometimes natural and theta join, union

Execute data expanding operations after transferring data between
sites

* Produce results larger than starting data
» Cartesian join, natural and theta join (sometimes)

Semijoin -- | X
1 [X =ng (1 [X] 1)

* Transfer only those tuples in r; which match in the natural join with r,
between sites

Global Query Library
Example

Given
* checkout relation stored locally
 (Large) book_info relation (call_no, title, etc.) stored centrally

Find details (including book titles) of all local checkouts that have
just gone overdue

Strategies

A. Copy entire book_info relation to the local site and do the join there

* Not optimal — copying a very large relation for only a few matching
tuples

5. Send local site only those book tuples relevant to the query
* Semijoin -- book_info | X checkout
« Data reducing operations at local and central sites

The Challenge of Modifying
Distributed Data

Ensure that updates to data stored at multiple sites get committed or
rolled back on each site

Avoid one site committing an update and another aborting it

Ensure that replicated data is consistently updated on all replicas

Updates to different replicas do not occur at the same time

Avoid inconsistencies arising from data read from a replica that has not
been updated yet

Partial failure: one or more sites down due to hardware, software, or
communication link failure

What happens when this failure occurs in the middle of an update
operation?

How to deal with corrupted or lost messages?

Two-Phase Commuit Protocol
(2PC)

Ensure that either all updates commit or none commit
Here, “updates” = changes to data (inserts, updates, deletes, etc.)

One site (usually the site originating the update) acts as the
coordinator

Each site completes work on the transaction, becomes partially
committed, and notifies the coordinator

Once coordinate receives completion messages from all sites, it
can begin the commit protocol

If coordinator receives a failure message from one or more sites, it
instructs all sites to abort the transaction

If the coordinator does not receive any message from asitemma
reasonable amount of time, 1t instructs all sites to abort the transaction

 Site or communication link might have failed during the transaction

2PC Phase 1:
Obtaining a Decision

* (Coordinator writes a <prepare T> entry to its log and forces all log
entries to stable storage

Coordinator sends a prepare-to-commit message to all participating
sites

» Ideally, each site writes a <ready T> entry to its log, forces all log
entries to stable storage, and sends a ready message to the
coordinator

If a site needs to abort the transaction, it writes a <no T> entry to its

log, forces all entries to stable storage, and sends an abort message to the
coordinator

Once a site sends a ready message to the coordinator, it gives up its right
to abort the transaction

e [t must commit if/when the coordinator instructs it to

2PC Phase 2:
Recording the Decision

Coordinator waits for each site to respond to the prepare-to-commit message

If any site responds negatively or fails to respond, coordinator writes an <abort T> entry
to its log and sends an abort message to all sites

If all responses are positive, coordinator writes a <commit T> entry to its log and sends a
commit message to all sites

At this point, the coordinator’s decision i1s final
+ 2PC protocol will work to carry it out even if a site fails

As each site receives the coordinator’s message, it either commits or aborts the transaction,
makes an appropriate log entry, and sends an acknowledge message back to the
coordinator

Once the coordinator receives acknowledge messages from all sites, it writes a <complete
T> entry to its log

If a site fails to send an acknowledge message, the coordinator may resend its message to it
+ Ultimately, the site 1s responsible to find and carry out the coordinator’s decision

2PC: If a Remote Site or
Communication Link Fails...

..before sending its ready message, the transaction will fail

When the site comes back up, it may send its ready message, but the
coordinator will ignore this

Coordinator will send periodic abort messages to site so that it will
eventually acknowledge the failure and return to a consistent state

Same scenario as above if ready message is lost in transit

..after the coordinator receives the ready message

The site must figure out what happened to the transaction once it recovers
(via a message from coordinator or asking some other site) and take
appropriate action

..after the site receives the coordinator’s final decision

The site will know what to do after it recovers (from commit or abort entry
in its log)

Takes appropriate action and sends an acknowledgement message to the
coordinator

2PC: If the Coordinator
Fails...

..before 1t sends a final decision

Sites that already sent ready messages have to wait for coordinator to
recover before deciding what to do with the transaction

* Can lead to blocking — locked data items unavailable until coordinator
recovers

Sites that have not sent ready message can time out and abort the

transaction

« ...after sending a final decision to at least one site, 1t will figure out
what to do after it recovers based on its log
<start T> but no <prepare T> = abort transaction
<prepare T> but no <commit T> —> find out status of sites or abort
transaction

<abort T> or <commit T>, but no <complete T> = restart sending of
commit/abort messages and waiting for acknowledgements

* Sites may be able to find out what to do from each other when the
coordinator 1s down

Updating Replicated Data

« All replicas of a given data item must be kept synchronized
when updates occur

* Approach: ssmultaneous updates of all replicas for each
transaction
» Ensures consistency across replicas

» Slows down update transactions and breaks replication
transparency

* What happens if a replica is unreachable during an update?

Primary Copy

» Designate a primary copy of the data at some site

* Reads can happen on any replica, but updates happen on primary copy
first

Primary copy’s site sends updates to replica sites

* Immediately after each update or periodically (if eventual consistency 1s
OK)

» Resending updates periodically to sites that are down

Secondary copies might be a little out-of-date, so critical reads
should go to the primary copy

What happens when the site with the primary copy fails?

- Data becomes unavailable for update until the primary copy site is
recovered

* Or, a secondary copy can become a temporary primary copy

* Could lead to inconsistencies when trying to reactivate the real primary
copy

Further Reading

 What 1s Distributed SOL? An Evolution of the Database

» CockroachDB (open source, developed by former Google
engineers)

* Google F1 (proprietary) and Spanner (proprietary, offered by
Google Cloud)

* Amazon Aurora (proprietary, offered by AWS)

* Distributed functionality for traditional RDBMS's:

* Features of standard PostgreSQL and Citus for PostgreSQL
* Features of standard MySQOL and MySQL Cluster

https://www.cockroachlabs.com/blog/what-is-distributed-sql/
https://en.wikipedia.org/wiki/CockroachDB
https://research.google/pubs/pub41344/
https://research.google/pubs/pub39966/
https://en.wikipedia.org/wiki/Amazon_Aurora
https://www.postgresql.org/docs/13/high-availability.html
https://www.citusdata.com/blog/2021/09/17/citus-10-2-extension-to-postgres-whats-new/
https://dev.mysql.com/doc/refman/5.6/en/replication.html
https://en.wikipedia.org/wiki/MySQL_Cluster

