
CS 220
Relational Algebra 



START RECORDING

 Notify about grading



Practice Quiz: Integrity Constraints
 What integrity constraints would be violated 

by the following operations, if any? 
(Operations don’t affect each other.)
1. DELETE FROM Employee

WHERE SSN = 123456789
2. DELETE FROM Employee

WHERE SSN = 234567891
3. DELETE FROM Department

WHERE Name = “Research”
4. DELETE FROM D_Locations

WHERE Location = “Houston”
5. UPDATE D_Locations SET Location = 

“Boston” WHERE Location = “Houston”
6. INSERT INTO Employee (Name, SSN, 

Salary) VALUES (“John A. Smith”, 
123456789, 71000)

7. INSERT INTO Employee (Name, Salary) 
VALUES (“John A. Smith”, 71000)

8. INSERT INTO Employee (Name, SSN, 
Salary) VALUES (“James Smith”, 
“Unknown”, 71000)

Name SSN Salary
John Smith 123456789 70000
Jane Smith 234567891 71000
Franklin Wong 345678912 72000

Employee

Name ID Mgr_SSN
Research 1 345678912
Administration 2 234567891

Department

D_ID Location
1 Houston
1 Boston
2 Boston

Department_Locations



Today you will learn…

 How to retrieve information from a relational schema



Relational Query Languages
 Query = “retrieval program”
 Language examples:

 Theoretical:
1. Relational Algebra
2. Relational Calculus

a. tuple relational calculus (TRC)
b. domain relational calculus (DRC)

§ Practical
1. SQL (SEQUEL from System R)
2. QUEL (Ingres)
3. Datalog (Prolog-like)

§ Theoretical QL’s:
§ give semantics to practical QL’s
§ key to understand query optimization in relational DBMSs



Chapter 8 Outline

 Unary Relational Operations: SELECT and PROJECT
 Relational Algebra Operations from Set Theory
 Binary Relational Operations: JOIN and DIVISION
 Additional Relational Operations
 Examples of Queries in Relational Algebra
 The Tuple Relational Calculus
 The Domain Relational Calculus



The Relational Algebra and
Relational Calculus

 Relational algebra
 Basic set of operations for the relational model

 Relational algebra expression
 Sequence of relational algebra operations

 Relational calculus 
 Higher-level declarative language for specifying relational queries



Relational Algebra

 Basic operators
 select  (s )
 project (p )
 rename (r )
 union (È )

 set difference ( - )
 cartesian product ( x )

 The operators take one or two relations as inputs and give a 
new relation as a result.

relational
operator

relation

relation

relation



Example Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

bid bname color 
101 Interlake blue 
102 Interlake red 
103 Clipper green 
104 Marine red 

 

 

Boats
Schema: 
Boats(bid, bname, color)
Sailors(sid, sname, rating, age)
Reserves( sid, bid, day)



Unary Relational Operations

• Unary: applied to a single relation

• project (p )
• select  (s )
• rename (r )



The PROJECT Operation

 Selects columns from table and discards the other 
columns:

 Degree 
 Number of attributes in <attribute list>

 Duplicate elimination
 Result of PROJECT operation is a set of distinct tuples



Projection

πage S( )2 Examples:                          ; 

 Retains only attributes that are in the “projection list”.
 Schema of result:

 exactly the columns in the projection list, with the same names that they 
had in the input relation.

 Projection operator has to eliminate duplicates
How do they arise? Why remove them?
Note: real systems typically don’t do duplicate elimination unless the 

user explicitly asks for it.  (Why not?)

)2(, Sratingsnamep



Projection sname rating 
yuppy 9 
lubber  8 
guppy 5 
rusty 10 

 

 )2(, Sratingsnamep

age
35.0
55.5

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

πage S( )2
S2



Unary Relational Operations:
SELECT

 The SELECT Operation
 Subset of the tuples from a relation that satisfies a selection 

condition:

§ Boolean expression contains clauses of the form
<attribute name> <comparison op> <constant value>

 or
§ <attribute name> <comparison op> <attribute name>



Unary Relational Operations:
SELECT

 Example:

 <selection condition> applied independently to each 
individual tuple t in R
 If condition evaluates to TRUE, tuple selected

 Boolean conditions AND, OR, and NOT



Unary Relational Operations:
SELECT

 Selectivity
 Fraction of tuples selected by a selection condition

 Combine SELECT operations into a single operation 
with AND condition



Selection (s)

σ rating S
>8 2( )

sname rating
yuppy 9
rusty 10

π σsname rating rating S, ( ( ))
>8 2

 Selects rows that satisfy selection condition.
 Result is a relation.

Schema of result is same as that of the input relation

sid sname rating age 
28 yuppy 9 35.0 
31 lubber  8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 



Selection
 Notation:  s p(r)
 p is called the selection predicate , r can be the name of a table, 

or another query
 Predicate: 

1. Simple
 attr1  =  attr2
 Attr  =  constant value
 (also, <, > , etc)

2. Complex
 predicate1 AND predicate2
 predicate1 OR predicate2
 NOT (predicate)



Rename (r )
 Allows us to refer to a relation by more than one name 

and to rename conflicting names
Example:

    r (X, E)
returns the expression E under the name X
                                                    

 Rename relation and/or attributes



Sequences of Operations
 In-line expression:

 Sequence of operations:

 Renaming:
 r(first, last, salary)(RESULT)



Binary Relational Operations

• Applied to two relations

• union (È )

• intersection (∩ )

• set difference ( - )
• cartesian product ( x )



UNION, INTERSECTION, and MINUS

 UNION, INTERSECTION, and MINUS take two input 
relations, which must be union-compatible:
Same number of columns (attributes)
Corresponding columns have the same domain (type)



UNION
 UNION

 R ∪ S
 Includes all tuples that are either in R or in S or in both R and S
 Duplicate tuples eliminated



INTERSECTION
 INTERSECTION

 R ∩ S
 Includes all tuples that are in both R and S



MINUS
 SET DIFFERENCE (or MINUS)

 R – S
 Includes all tuples that are in R but not in S



Union

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

S S1 2∪

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1

S2



Intersection

sid sname rating age 
31 lubber 8 55.5 
58 rusty 10 35.0 

 

 

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1

S2
S1 ∩ S2



Set Differencesid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1

S2

sid sname rating age
22 dustin 7 45.0

S S1 2−

S2 – S1

sid sname rating age 
28 yuppy 9  35.0 
44 guppy 5 35.0 

 



The CARTESIAN PRODUCT (CROSS 
PRODUCT) Operation

 CARTESIAN PRODUCT 
 CROSS PRODUCT or CROSS JOIN
 Denoted by ×
 Relations do not have to be union compatible
 Useful when followed by a selection that matches values of attributes



Cartesian-Product
 S1 ´ R1: Each row of S1 paired with each row of R1.

Like the c.p for mathematical relations: every tuple of S1 “appended” to every 
tuple of R1

 Q: How many rows in the result?
 Result schema has one field per field of S1 and R1, with field 

names `inherited’ if possible.
May have a naming conflict:  Both S1 and R1 have a field with the 

same name.
 In this case, can use the renaming operator…



Cartesian Product Example

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

sid sname rating age 
22 dustin 7  45.0 
31 lubber 8 55.5 
58 rusty 10 35.0 

 

 

sid bid day 
22 101  10/10/96 
58 103 11/12/96 

 

 

R1S1

S1 X R1 =



A Complete Set of Relational Algebra 
Operations: Basic Operators

 Set of relational algebra operations {σ, π, ∪, ρ, –, ×} 
is a complete set
 Any relational algebra operation can be expressed as a sequence of 

operations from this set



Compound Operators
 In addition to the 6 basic operators, there are 

several additional “Compound Operators”
 These add no computational power to the language, but are 

useful shorthands.
Can be expressed solely with the basic ops.



Intersection, revisited
 Intersection takes two input relations, which must be 

union-compatible.
 Q: How to express it using basic operators?
           R Ç S = R  - (R - S)



Intersection
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1

S2

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∩



THETA JOIN
 The (Theta) JOIN Operation

 Denoted by 
 Combine related tuples from two relations into single “longer” tuples
 General join condition of the form <condition> AND <condition> 
AND...AND <condition>

 Each <condition> of the form Ai θ Bj

 Ai and Bj  are attributes of R and S, respectively
 Ai and Bj have the same domain
 θ (theta) is one of the comparison operators:

§ {=, <, ≤, >, ≥, ≠}

 Example:



THETA JOIN
 Condition Join (or “theta-join”):
 Result schema same as that of cross-product.
 May have fewer tuples than cross-product.

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

R c S c R S = ×σ ( )

11 .1.1 RS sidRsidS <


sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1S1



EQUIJOIN
 EQUIJOIN

 Only = comparison operator used
 Always have one or more pairs of attributes that have identical 

values in every tuple



NATURAL JOIN
 NATURAL JOIN

 Denoted by *
 Conceptually (though in practice done more efficiently):

 Compute R ´ S
 Select rows where attributes that appear in both relations have equal 

values
 Project all unique attributes and one copy of  each of the common ones.

 Useful for putting “normalized” relations back together.
 Removes second (superfluous) attribute in an EQUIJOIN condition



Natural Join Example
sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S1 * R1 =
sid sname rating age bid day 
22  dustin 7 45.0 101 10/10/96 
58 rusty 10 35.0 103 11/12/96 

 

 



Inner Joins

 Type of match and combine operation 
 Defined formally as a combination of CARTESIAN 

PRODUCT and SELECTION
 Join selectivity

 Expected size of join result divided by the maximum size nR * nS

 We’ve seen:
 THETA JOIN
 EQUIJOIN
 NATURAL JOIN



DIVISION

 Denoted by ÷
 Example: retrieve the names of employees who work 

on all the projects that ‘John Smith’ works on
 Apply to relations R(Z) ÷ S(X)

 Attributes of R are a subset of the attributes of S



DIVISION

 Useful for expressing “for all” queries like:                                                                                                      
Find sids of sailors who have reserved all boats.

 For A/B attributes of B are subset of attrs of A.
May need to “project” to make this happen.

 E.g., let A have 2 fields, x and y; B have only field y:
 

A/B contains all tuples (x) such that for every y tuple in B, there is an 
xy tuple in A.

{ }),( AyxByxBA Î$Î"=



Examples of Division A/B
sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1A

B1
B2

B3

A/B1 A/B2 A/B3



Expressing A/B Using Basic Operators
 Division is not essential op; just a useful shorthand.  

 (Also true of joins, but joins are so common that systems implement joins 
specially.)

 Idea:  For A/B, compute all x values that are not 
`disqualified’ by some y value in B.
 x value is disqualified if by attaching y value from B, we obtain an xy tuple 

that is not in A.

Disqualified x values: )))((( ABAxx -´pp
A/B: π x A( ) − Disqualified x values



Operations of Relational Algebra



Operations of Relational Algebra 
(cont’d.)



COMPANY Database

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

Dname Dnumber Mgr_ssn Mgr_start_date

EMPLOYEE

DEPARTMENT

Pname Pnumber Plocation Dnum
PROJECT



Examples of Queries
in Relational Algebra



Examples of Queries
in Relational Algebra (cont’d.)



Query Trees

 Represents the input relations of query as leaf nodes 
of the tree

 Represents the relational algebra operations as 
internal nodes





Additional Ops: Generalized Projection

 Allows functions of attributes to be included in the 
projection list:



Additional Ops: Aggregate Functions 
and Grouping

 Aggregate functions
 Common functions applied to collections of numeric values 
 Include SUM, AVERAGE, MAXIMUM, and MINIMUM

 Grouping
 Group tuples by the value of some of their attributes 
 Apply aggregate function independently to each group





OUTER JOIN Operations

 Outer joins
 Keep all tuples in R, or all those in S, or all those in both relations 

regardless of whether or not they have matching tuples in the other 
relation

 Types
§ LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN

 Example:



Left Outer Join Example

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1 S1

S1 ⟕ R1 = sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
31 lubber 8 55.5 NULL NULL
58 rusty 10 35.0 103 11/12/96



Summary

 Formal languages for relational model of data:
 Relational algebra: operations, unary and binary operators
 Some queries cannot be stated with basic relational algebra 

operations, but are important for practical use:
§ Aggregate functions and grouping
§ Recursive closure

 Next: relational calculus


