Section 3.2, selected answers
Math 114 Discrete Mathematics
D Joyce, Spring 2018

2. Determine whether each of these functions is \(O(x^2) \).
 a. \(f(x) = 17x + 11 \). Yes. By theorem 1, any linear function is \(O(x) \), and since any \(O(x) \) function is also \(O(x^2) \), this function is \(O(x^2) \).
 b. \(f(x) = x^2 + 1000 \). Yes. By theorem 1, any quadratic function is \(O(x^2) \).
 c. \(f(x) = x \log x \). Yes. We know \(x \) is \(O(x) \). We also know \(\log x \) is \(O(x) \). Therefore, their product is \(O(x^2) \).
 d. \(f(x) = x^4/2 \). Theorem 4 is a strengthening of theorem 1. It implies this degree 4 polynomial of \(O(x^4) \), but it not \(O(x^n) \) for any \(n < 4 \). Therefore, this function is not \(O(x^2) \).
 e. \(f(x) = 2^x \). This exponential function is not \(O(x^2) \).
 f. \(f(x) = \lfloor x \rfloor \cdot \lceil x \rceil \). Both floor and ceiling are \(O(x) \), so their product is \(O(x^2) \).

8. Find the least integer \(n \) such that \(f(x) \) is \(O(x^n) \) for each of these functions.
 a. \(f(x) = 2x^2 + x^3 \log x \). Since \(x^3 \) dominates \(x^2 \), we can ignore the first term and concentrate on the second term, \(x^3 \log x \). Since \(x^3 \log x \) is \(O(x^4) \), but it’s not \(O(x^3) \), the \(n \) we’re looking for here is 4.
 b. \(f(x) = 3x^5 + (\log x)^4 \). Any positive power of \(x \) dominates any power of \(\log x \), so we can ignore the second term. Then, \(f \) is \(O(x^5) \).
 c. \(f(x) = (x^4 + x^2 + 1)/(x^4 + 1) \). Divide the denominator into the numerator in order to write the function as

\[
 f(x) = 1 + \frac{x^2}{x^4 + 1}.
\]

Since the fraction is \(O(1) \), therefore \(f(x) \) is \(O(1) \).
 d. \(f(x) = (x^3 + 5 \log x)/(x^4 + 1) \). The denominator is bigger than the numerator! Since \(x^4 \) dominates 1, and \(x^3 \) dominates \(\log x \), we can disregard those terms and reduce the problem to finding the order of \(x^3/x^4 \), but that’s just \(x^{-1} \). Thus \(f(x) \) is \(O(x^{-1}) \), and the \(n \) we’re looking for is \(-1\).

20. Find the order of these functions.
 a. \((n^3+n^2 \log n)(\log n+1)+(17 \log n+19)(n^3+2) \). Whenever you’ve got the sum of two terms, ignore the smaller one. Then this expression simplifies to \(n^3 \log n + 17n^2 \log n \). We can drop the constant 17. Also, since \(\log n \) is \(O(n) \), therefore \(n^2 \log n \) is \(O(n^3) \). Thus, this function is on the order of \(n^3 \log n \).
 b. \((2^n + n^2)(n^3 + 3^n) \). Since \(2^n \) dominates \(n^2 \), and \(3^n \) dominates \(n^3 \), this is on the order of \(2^n \cdot 3^n \), which is \(6^n \).
 c. \((n^n + n2^n + 5^n)(n! + 5^n) \). The function \(n^n \) dominates both \(2n^n \) and \(5^n \), while \(n! \) dominates \(5^n \), so this function is on the order of \(n^n \cdot n! \).