9. Find a formula for the sum of the first n even positive integers, and use mathematical induction to prove your formula is correct.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2n$</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>\sum</td>
<td>2</td>
<td>6</td>
<td>12</td>
<td>20</td>
<td>30</td>
<td>42</td>
</tr>
</tbody>
</table>

It appears that the sum $\sum_{k=1}^{n} 2k$ is $n^2 + n$.

To prove it using math induction, first check the base case. Is the sum of the first $n = 1$ even number (which is just 2) equal to $1^2 + 1$? Yes, it is.

Next, the inductive step. Assume the inductive hypothesis $P(n)$:

$$\sum_{k=1}^{n} 2k = n^2 + n$$

is true, and prove that $P(n + 1)$:

$$\sum_{k=1}^{n+1} 2k = (n + 1)^2 + (n + 1)$$

is also true. Starting with the LHS

$$\sum_{k=1}^{n+1} 2k = \left(\sum_{k=1}^{n} 2k\right) + 2(n + 1)$$

which, by the inductive hypothesis,

$$= (n^2 + n) + 2(n + 1)$$

With a little algebra, that can be written as the RHS:

$$= n^2 + 2n + 1 + n + 1 = (n + 1)^2 + (n + 1).$$

Therefore, the inductive step is valid and the proof is complete.

10. Find a formula for

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n + 1)}$$

by examining the values of this expression for small values of n. Use mathematical induction to prove your result.

Start by doing the additions, not with a calculator, but by hand. If you use a calculator, you probably won’t see the pattern.

$$\frac{1}{1 \cdot 2} = \frac{1}{2}$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{2}{3}$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} = \frac{3}{4}$$

Aha! The pattern suggests that

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n + 1)} = \frac{n}{n + 1}.$$

Now, to prove it. The first line shows it’s true for the base case.

Next, the inductive step. Assume the inductive hypothesis

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n + 1)} = \frac{n}{n + 1}$$

and prove that

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n + 1)} + \frac{1}{n + 1} = \frac{n + 1}{n + 2}.$$

By the inductive hypothesis, the LHS

$$= \frac{n}{n + 1} + \frac{1}{(n + 1)(n + 2)}.$$

But that simplifies to

$$= \frac{n(n + 2) + 1}{(n + 1)(n + 2)} = \frac{n^2 + 2n + 1}{(n + 1)(n + 2)} = \frac{(n + 1)^2}{(n + 1)(n + 2)},$$

and that reduces to the RHS.

Therefore, the inductive step is valid, and the proof is complete.
14. Prove that for every positive integer \(n \),
\[
\sum_{k=1}^{n} k2^k = (n-1)2^{n+1} + 2.
\]

The base is when \(n = 1 \). In that case, the equation says that \(1 \cdot 2^1 = (1-1)2^{1+1} + 2 \), which is true.

For the inductive step, we assume the inductive hypothesis that for a given value of \(n \),
\[
\sum_{k=1}^{n} k2^k = (n-1)2^{n+1} + 2,
\]
and we have to show that for the next value of \(n \), namely \(n + 1 \), that
\[
\sum_{k=1}^{n+1} k2^k = ((n + 1) - 1)2^{(n+1)+1} + 2,
\]
that is, that
\[
\sum_{k=1}^{n+1} k2^k = n2^{n+2} + 2.
\]

16. Use mathematical induction to prove that
\[
1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \cdots + n(n+1)(n+2) = (n+1)(n+2)(n+3)/4.
\]

Let’s denote the left hand side of this equation by LHS(\(n \)) and the right hand side by RHS(\(n \)).

You have to decide what the base case is. Is it \(n = 0 \) or \(n = 1 \)? It isn’t clear from the statement of the problem. If you take \(n = 0 \) to be the base case, then LHS(0) is an empty sum, and an empty sum is 0. But RHS(0) is \(0 \cdot 1 \cdot 2 \cdot 3/4 \), which is also 0. The other choice for a base case is \(n = 1 \). Then LHS(1) is \(1 \cdot 2 \cdot 3 \), while RHS(1) \(1 \cdot 2 \cdot 3 \cdot 4/4 \), so the two sides are equal. So, the base case is taken care of either with \(n = 0 \) or with \(n = 1 \).

Now for the inductive step. Suppose that the statement is true for \(n \), that is, LHS(\(n \)) = RHS(\(n \)). We have to prove that it’s true for \(n + 1 \), that is, LHS(\(n + 1 \)) = RHS(\(n + 1 \)), which written is full is
\[
1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \cdots + (n + 1)(n + 2)(n+2) = (n+1)(n+2)(n+3)(n+4)/4.
\]

The only difference between the LHS(\(n \)) and LHS(\(n + 1 \)) is that the latter has one more term, namely, \((n+1)(n+2)(n+2)\). That is,
\[
\text{LHS}(n + 1) - \text{LHS}(n) = (n+1)(n+2)(n+2).
\]

If we can show that RHS(\(n + 1 \)) - RHS(\(n \)) has the same value, then we may conclude LHS(\(n \)) = RHS(\(n \)) implies LHS(\(n + 1 \)) = RHS(\(n + 1 \)). But
\[
\text{RHS}(n+1) - \text{RHS}(n) = (n+1)(n+2)(n+3)(n+4)/4 - n(n+1)(n+2)(n+3)/4
\]
\[
= ((n+4) - n)(n+1)(n+2)(n+3)/4
\]
\[
= (n+1)(n+2)(n+3)
\]
That finishes the inductive step, so we’ve finished the proof.

21. Show that \(2^n > n^2 \) whenever \(n \) is an integer greater than 4.

In this case, the base case occurs when \(n = 5 \), so you need to check that \(2^5 > 5^2 \), which, of course, is true.

Now for the inductive step. Assume the inductive hypothesis \(2^n > n^2 \), where \(n > 4 \), and prove that \(2^{n+1} > (n+1)^2 \).
\[
2^{n+1} = 2 \cdot 2^n > 2n^2
\]
At this point, it suffices to show that \(2n^2 > (n+1)^2 \), and that’s logically equivalent to the inequality \(n^2 > 2n+1 \), or \(n^2 - 2n+1 > 2 \), that is, \((n-1)^2 > 2 \). But \(n > 4 \), so \((n-1)^2 > 9 > 2 \). Thus, the inductive conclusion \(2^{n+1} > (n+1)^2 \) follows, and the proof is complete.