Due Wednesday. From page 26, exercises 2, 3, 4, 5, 6, 11, 12, 13.

For next time. Read through section 2.3.

Last meeting. Some elementary properties of divisibility, prime numbers, greatest common divisors, and the Euclidean algorithm.

Today. More on divisibility, prime numbers, greatest common divisors, and the Euclidean algorithm. We’ll continue to assume all the numbers under discussion are positive integers.

We’ve seen how the Euclidean algorithm computes the greatest common divisor \((m, n)\) of two numbers \(m\) and \(n\) by repeatedly subtracting the smaller from the larger until they’re reduced to the same number \(d\), their GCD. That worked because at each step a number divided the two current numbers in the process, \(a\) and \(b\), if and only if it divided the two next numbers \(a - b\) and \(b\). That implies that a number divides \(d\) if and only if it divides both \(m\) and \(n\). In summary, we have the following theorem.

Theorem. Let \(d\) be the result of applying the Euclidean algorithm to \(m\) and \(n\). Then \(d\) is the greatest common divisor \((m, n)\). Furthermore, every divisor \(k\) of \(m\) and \(n\) divides \(d = (m, n)\). Finally, every divisor of \(d\) is a common divisor of \(m\) and \(n\).

Proof: The remarks above show that every divisor \(k\) of \(m\) and \(n\) also divides the result \(d\) of applying the Euclidean algorithm to \(m\) and \(n\). They also show that the result \(d\) also divides \(m\) and \(n\). Thus, \(d\) is a divisor of \(m\) and \(n\), and since every other divisor divides \(d\), it is the greatest common divisor. Finally, if \(k|d\), since \(d|m\) and \(d|n\), therefore \(k|m\) and \(k|n\). Q.E.D.

There’s still more that we can get out of the algorithm. Let’s use the division form for it. Let’s suppose that \(m > n\) to begin with. We divide \(n\) into \(m\) and get a quotient of \(q_1\) and remainder of \(r_1\), that is

\[
m = q_1n + r_1,
\]

with \(r_1\) between 1 and \(n\). Then we work with \(n\) and \(r_1\) instead of \(m\) and \(n\). Divide \(r_1\) into \(n\) to get quotient of \(q_2\) and a remainder of \(r_2\), that is,

\[
n = q_2r_1 + r_2.
\]

And we keep going until eventually we get a remainder of 0.

\[
\begin{align*}
r_1 &= q_3r_2 + r_3 \\
r_2 &= q_4r_3 + r_4 \\
\vdots \\
r_{s-3} &= q_{s-1}r_{s-2} + r_{s-1} \\
r_{s-2} &= q_s r_{s-1} + 0
\end{align*}
\]

We have

\[
m > n > r_1 > r_2 > \cdots > r_{s-1}
\]

and \(r_{s-1}\) is \(d\), the GCD we’re looking for.

We can use these equations to find \(d\) as a linear combination of the original numbers \(m\) and \(n\) as we did in an example last time. The first equation implies that \(r_1\) is a linear combination of \(m\) and \(n\). The next implies that \(r_2\) is a linear combination of \(n\) and \(r_1\), therefore a linear combination of \(m\) and \(n\). Likewise the next shows \(r_3\) is a linear combination of \(m\) and \(n\), and so forth until we get to the next to the last equation which shows that \(r_{s-1}\), which is
the GCD of \(m \) and \(n \) is a linear combination of \(m \) and \(n \). Thus, we’ve shown the following theorem.

Theorem. The greatest common divisor \(d = (m, n) \) of \(m \) and \(n \) is a linear combination of \(m \) and \(n \). That is, there exist numbers \(a \) and \(b \) such that

\[
d = am + bn.
\]

Now that we have the major theorems on GCDs, there are a few more fairly elementary properties of GCDs that are straightforward to prove, such as these.

Theorem.

(a). \((a, b + ka) = (a, b)\).

(b). \((ak, b) = k(a, b)\).

(c). If \(d = (a, b) \), then \((a/d, b/d) = 1\).

We may do the proof of one or two of these in class.

Greatest common divisors of more than two numbers. The GCD of more than two numbers is defined the same way as for two numbers: the GCD of a set of numbers the largest number that divides them all. For example, \((14, 49, 91) = 7\). To find a GCD of three numbers, \(a\), \(b\), and \(c\), first find \(d = (a, b)\), then find \(e = (d, c)\). Thus,

\[
(a, b, c) = ((a, b), c),
\]
a statement that is easy to show.

Pairwise relatively prime numbers. A set of numbers is said to be *pairwise relatively prime* if any two of them are relatively prime. For instance, 15, 22, and 49 are three pairwise relatively prime numbers. Thus, \(a\), \(b\), and \(c\) are pairwise relatively prime when

\[
(a, b) = (a, c) = (b, c) = 1.
\]

Note that \((a, b, c)\) can be 1 without \(a\), \(b\), and \(c\) being pairwise relatively prime. For instance, \((4, 3, 9) = 1\), but \((3, 9) = 3\).

The unique factorization theorem, a.k.a., the fundamental theorem of arithmetic. Last time we proved that every number could be written as a product of primes, that is, it could be factored as a product of primes. But we know more, and that is