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Due Friday. Exercises from chapter 4: exercises
1, 2, 5.

Read for Wednesday. Continue reading chapter
4.

Last time. Studied the stereographic projection.
Discussed the purpose of Klein’s Erlanger program.

Today. Klein’s Erlanger Program. Klein’s idea
was to base a geometry, whichever one of these is
under consideration, by taking as a basis the group
of transformations of that geometry that preserves
the properties of that geometry. For instance, if the
geometry is the usual Euclidean plane geometry,
then transformations of the plane that preserve dis-
tance are the appropriate transformations. That’s
enough, because if a tranformation preserves dis-
tance, then it preserves straight lines, parallelism,
angles, areas, and any other Euclidean concepts. A
transformation that preserves distance is called a
rigid motion or an isometry.

Transformation groups. Defintion of a trans-
formation group G on a set S. The points of the
geometric space are the elements of the set S, some-
times called the underlying space of the geometry.
Typically, these points are given coordinates, but
the coordinates are for our convenience, they aren’t
intrinsic to the geometry. The group G is a group
of transformations of S. That is, each element T

of G is a transformation T : S → S. That means,
precisely, that T is a function that assigns to each
point x ∈ S another point T (x) ∈ S. We’ll fre-
quently leave out the parenthese and simply write
Tx. Three requirements are placed on G in order
for it to be a group of transformations.

First, the identity transformation I is included
in G. That’s the function I defined by I(x) = x for
all x ∈ S.

Second, for each transformation T ∈ G, there
is an inverse transformation U ∈ G. For U to be
an inverse of T means that T (x) = y if and only
if x = U(y). The inverse transformation of T is
usually denoted T−1.

Third, if T and U are transformations in G, then
their composition T ◦ U is also a transformation
in G. The composition T ◦ U is defined as usual
by (T ◦ U)(x) = T (U(x)). We’ll usually write the
compostion without the circle, TU .

Klein’s idea was to take a geometry as that which
is completely determined by a transformation group
G. It’s clear the the points of the geometry are the
elements of the underlying space S. But all the
other geometric concepts are to be drawn from the
group G. Thus, we can identify a geometry with
(S, G), the pair consisting of a set S and a group of
transformations G on that set.

Congruent figures in a geometry. First, we’ll
take as a figure any subset of the underlying space
S. Subsets include the usual figures of study like
triangles and circles, but they include lots of unin-
teresting things too. We’ll include them all as being
figures.

We’ll say that two figures A and B are congruent

in a geometry if there is some transformation T in
the group G that sends A to B, that is T (A) = B,
and by T (A) we mean the figure of all points of the
form T (a) where a ranges over the figure A,

T (A) = {T (a) : a ∈ A}.
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When A and B are congruent figures, we’ll denote
that as A ∼= B.

Congruence as an equivalence relation.

Note that congruence is an equivalence relation be-
cause it satisfies the three conditions to be an equiv-
alence relation, namely, reflexivity, symmetry, and
transitivity. These three properties correspond ex-
actly to the three conditions necessary for G to be
a group.

Congruence is reflexive since each figure A is
congruent to itself, A ∼= A. That’s because the
identity transformation I sends A to itself, that is,
I(A) = A.

Congruence is symmetric since if A is congruent
to B, then B is congruent to A. Why? Well, if
A ∼= B, then there is some transformation T such
that T (A) = B. Then A = T−1(B), so B ∼= A.

Congruence is transitive since if A ∼= B and B ∼=
C, then A ∼= C. Here’s the reason. If A ∼= B,
then T (A) = B for some tranformation T . And if
B ∼= C, then U(B) = C for some tranformation U .
Then UT (A) = U(B) = C, so the composition UT

sends A to C. Therefore, A ∼= C.

Invariants of a geometry. We’ll define two
related concepts of invariance.

First, we’ll say a set D of figures is an invariant

set of figures if it’s closed under congruence. That
means if A is a figure in D, and A ∼= B, then B is
also a figure in D. In other words, if A is any figures
in D, and T is any tranformation in the group G,
then G(A) is another of the figures in D.

Second, we’ll say a function f defined on an in-
variant set D is an invariant function if it has the
same value for all congruent figures. Equivalently,
if A is any figure in D and T is a tranformation in
G, then f(T (A)) = f(A).

Examples. We’ll look at some example plane
geometries. We’ll describe the sets S in terms of
complex numbers C, and the transformations as
functions on the complex numbers. Our first ex-
ample will be the usual Euclidean plane. Next,
we’ll consider a subgeometry of that which only has
translations, called translational geometry. It’s not
particularly important, but it does give us an ex-

ample of another geometry. We won’t get to the
more interesting geometries until later.
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