Name: \qquad
Mailbox number: \qquad

Math 130 Linear Algebra
 Final Exam

December 2013
You may use a calculator and a sheet of notes. Leave your answers as expressions such as $e^{2} \sqrt{\frac{\sin ^{2}(\pi / 6)}{1+\ln 10}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

1. [18; 6 points each part] Consider the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ such that $T\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}, T\left(\mathbf{e}_{2}\right)=\mathbf{e}_{3}$, and $T\left(\mathbf{e}_{3}\right)=\mathbf{e}_{1}$.
a. What is the 3×3 matrix A that represents T, that is, $T(\mathbf{x})=A \mathbf{x}$?

b. The matrix A^{3} represents $T \circ T \circ T$, the triple composition of T. What matrix is that?
c. Is the transformation T a reflection, and if so, across which plane, or is it a rotation, and if so, then by what angle and about what axis, or is it some other transformation of space?
2. [18; 6 points each part] Consider the matrix

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

a. Find the characteristic polynomial of A.
b. Find the eigenvalues for A.
c. Choose one of the eigenvalues that you found in part band determine all the eigenvectors for it.
3. [10] Find a basis and the dimension of the vector space of all vectors of the form (a, b, c, d) in \mathbf{R}^{4}, where $a+b=c+d$.
4. [12] Prove that if A is an upper triangular matrix ,then the eigenvalues of A are the elements on the main diagonal of A.
5. [10] Find the inverse of the matrix $A=\left[\begin{array}{rrr}1 & -1 & 0 \\ 2 & 1 & 3 \\ 0 & 2 & 1\end{array}\right]$. (Check your answer if you have time.)
6. [12] Consider the linear transformation $T: \mathbf{R}^{5} \rightarrow \mathbf{R}^{3}$ represented by the matrix

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & -1 & 0 \\
2 & 1 & 0 & 3 & 2 \\
4 & 5 & 6 & 1 & 2
\end{array}\right]
$$

Determine the rank and nullity of T. (Show your work)

Rank $=\quad$ Nullity $=$
7. [21; 3 points each] True/false. For each sentence write the whole word "true" or the whole word "false". If it's not clear whether it should be considered true or false, you may explain in a sentence if you like.
\qquad a. Given a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, there is a basis of \mathbf{R}^{n} whose basis vectors are all eigenvectors.
\qquad b. Inner products distribute over addition, that is, $\langle\mathbf{u}+\mathbf{v} \mid \mathbf{w}\rangle=\langle\mathbf{u} \mid \mathbf{w}\rangle+\langle\mathbf{v} \mid \mathbf{w}\rangle$.
\qquad c. The determinant of a square matrix is equal to the determinant of its transpose.
\qquad d. The inequality $\|\mathbf{w}-\mathbf{v}\| \leq\|\mathbf{w}\|+\|\mathbf{v}\|$ is known as Cramer's inequality.
\qquad e. Matrix multiplication is commutative: $A B=B A$.
\qquad f. The following set S is a basis for \mathbf{R}^{6}.

$$
S=\{(3,2,0,8,-5,2),(4,3,-2,0,4,1),(-3,2,1,4,5,2),(2,3,-2,1,0,0),(0,3,2,3,2,1)\}
$$

g. The fixed points \mathbf{x} of a matrix transformation $T(\mathbf{x})=A \mathbf{x}$ are eigenvectors with eigenvalue 1.

$\# 1 .[18]$	
$\# 2 .[18]$	
$\# 3 .[10]$	
$\# 4 .[12]$	
$\# 5 .[10]$	
$\# 6 .[12]$	
$\# 7 .[21]$	
Total	

