Name: $\qquad$
Mailbox number: $\qquad$

# Math 130 Linear Algebra 

Second Test
November 2013
You may use a calculator and a sheet of notes. Leave your answers as expressions such as $e^{2} \sqrt{\frac{\sin ^{2}(\pi / 6)}{1+\ln 10}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

1. [18] Give examples of transformations with the following properties. You don't have to prove that they have the properties. Just specify the transformations.
a. [5] A linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ whose rank is 0 and nullity is 2 .
b. [5] A linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ whose rank is 1 and nullity is 1 .
c. [8] Two different linear transformations $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ both with rank 2 and nullity 0 .
2. [20] The set of five vectors

$$
S=\{(1,-3,-2),(1,2,2),(3,1,2),(0,5,4),(2,-1,1)\}
$$

spans $\mathbf{R}^{3}$. Find a subset of $S$ which is a basis for $\mathbf{R}^{3}$. Show your work.
3. [28; 4 points each] True/false. For each sentence write the whole word "true" or the whole word "false". If it's not clear whether it should be considered true or false, you may explain in a sentence if you like.
$\qquad$ a. If $T: V \rightarrow W$ is a linear transformation, and if the vectors $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)$ are linearly independent in $W$, then the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent in $V$.
b. If a linear transformation $T: V \rightarrow W$ goes between two vector spaces $V$ and $W$ of the same dimension, then it's an isomorphism.
$\qquad$ c. If the rank of a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is $m$, then $T$ is surjective (that is to say, $T$ is onto).
$\overline{A B=B A .}$ d. Given two $n \times n$ matrices $A$ and $B$, if $(A+B)(A-B)=A^{2}-B^{2}$, then
$\qquad$ e. Given two $n \times n$ matrices $A$ and $B$, if both $A$ and $B$ are invertible, then so is $A+B$.
 $M_{3 \times 4}$ of $3 \times 4$ matrices.
$\ldots$ g. If a set $S$ spans a vector space $V$, then every every vector in $V$ can be written as a linear combination of vectors from $S$ in only one way.
4. [20] Consider the linear transformation $T: \mathbf{R}^{5} \rightarrow \mathbf{R}^{3}$ described by the matrix $A$, that is, $T(\mathbf{x})$ is found by evaluating $A$ times the column matrix $\mathbf{x}$, where

$$
A=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 1 \\
0 & 0 & 1 & 4 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

a. [7] Determine a basis for the kernel of $T$. (This should be a set of vectors in $\mathbf{R}^{5}$.)
b. [3] What is the nullity of $T$ ?
c. [7] Determine a basis for the image of $T$. (This should be a set of vectors in $\mathbf{R}^{3}$.)
d. [3] What is the rank of $T$ ?
5. [15] If $A$ is a $5 \times 3$ matrix, prove that the rows of $A$ are linearly dependent. (There are several ways that you can approach this. Be sure to write a clear and complete explanation.)

| $\# 1 .[18]$ |  |
| :--- | :--- |
| $\# 2 .[20]$ |  |
| $\# 3 .[28]$ |  |
| $\# 4 .[20]$ |  |
| $\# 5 .[15]$ |  |
| Total |  |

