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We’ve looked at the operations of addition and
scalar multiplication on linear transformations and
used them to define addition and scalar multipli-
cation on matrices. For a given basis β on V and
another basis γ on W , we have an isomorphism
φγβ : Hom(V,W )

'→ Mm×n of vector spaces which
assigns to a linear transformation T : V → W its
standard matrix [T ]γβ.

We also have matrix multiplication which corre-
sponds to composition of linear transformations. If
A is the standard matrix for a transformation S,
and B is the standard matrix for a transformation
T , then we defined multiplication of matrices so
that the product AB is be the standard matrix for
S ◦ T .

There are a few more things we should look at
for matrix multiplication. It’s not commutative.
It is associative. It distributes with matrix addi-
tion. There are identity matrices I for multiplica-
tion. Cancellation doesn’t work. You can compute
powers of square matrices. And scalar matrices.

Matrix multiplication is not commutative.
It shouldn’t be. It corresponds to composition of
linear transformations, and composition of func-
tions is not commutative.

Example 1. Let’s take a 2-dimensional geometric
example. Let T be rotation 90◦ clockwise, and S be
reflection across the x-axis. We’ve looked at those
before. The standard matrices A for S and B for

T are

A =

[
1 0
0 −1

]
B =

[
0 −1
1 0

]
Then the two compositions are

BA =

[
0 −1
1 0

] [
1 0
0 −1

]
=

[
0 1
1 0

]
AB =

[
1 0
0 −1

] [
0 −1
1 0

]
=

[
0 −1
−1 0

]
The products aren’t the same.

You can perform these on physical objects. Take
a book. First rotate it 90◦ then flip it over. Start
again but flip first then rotate 90◦. The book ends
up in different orientations.

Matrix multiplication is associative. Al-
though it’s not commutative, it is associative.
That’s because it corresponds to composition of
functions, and that’s associative. Given any three
functions f , g, and h, we’ll show (f ◦ g) ◦ h =
f ◦ (g ◦ h) by showing the two sides have the same
values for all x.

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x)))

while

(f ◦ (g ◦ h))(x) = f((g ◦ h)(x)) = f(g(h(x))).

They’re the same.

Since composition of functions is associative, and
linear transformations are special kinds of func-
tions, therefore composition of linear transforma-
tions is associative. Since matrix multiplication
corresponds to composition of linear transforma-
tions, therefore matrix multiplication is associative.

An alternative proof would actually involve
computations, probably with summation notation,
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something like

∑
j

aij

(∑
k

bjkckl

)
=

∑
j,k

aijbjkckl

=
∑
k

(∑
j

aijbjk

)
ckl.

Matrix multiplication distributes over ma-
trix addition. When A, B, and C are the right
shape matrices so the the operations can be per-
formed, then the the following are always identities:

A(B + C) = AB + AC

(A+B)C = AC +BC

Why does it work? It suffices to show that it works
for linear transformations. Suppose that R, S, and
T are their linear transformations. The correspond-
ing identities are

R ◦ (S + T ) = (R ◦ S) + (R ◦ T )

(R + S) ◦ T = (R ◦ T ) + (S ◦ T )

Simply evaluate them at a vector v and see that
you get the same thing. Here’s the first identity.
You’ll need to use linearity of R at one point.

(R ◦ (S + T ))(v) = R((S + T )(v))

= R(S(v) + T (v))

= R(S(v)) +R(T (v))

((R ◦ S) + (R ◦ T ))(v) = (R◦S)(v) + (R◦T )(v)

= R(S(v)) +R(T (v))

The identity matrices. Just like there are ma-
trices that work as additive identities (we denoted
them all 0 as described above), there are matrices
that work as multiplicative identities, and we’ll de-
note them all I and all them identity matrices. An
identity matrix is a square n by n matrix with 1
down the diagonal and 0 elsewhere. You could de-
note them In to emphasize their sizes, but you can

always tell by the context what its size is, so we’ll
leave out the index n. By the way, whenever you’ve
got a square n by n matrix, you can say the order
of the matrix is n. Anyway, I acts like an identity
matrix

AI = A = IA.

Note that if A is not a square matrix, then the
orders of the two identity matrices I in the identity
AI = A = IA are different. For example,[

4 5 6
3 −1 0

] 1 0 0
0 1 0
0 0 1


=

[
4 5 6
3 −1 0

]
=

[
1 0
0 1

] [
4 5 6
3 −1 0

]
.

Cancellation doesn’t work for matrix multi-
plication! Not only is matrix multiplication non-
commutative, but the cancellation law doesn’t hold
for it. You’re familiar with cancellation for num-
bers: if xy = xz but x 6= 0, then y = z. But we
can come up with matrices so that AB = AC and

A 6= 0, but B 6= C. For example A =

[
1 0
0 0

]
,

B =

[
1 0
0 3

]
, and C =

[
1 0
0 4

]
.

Powers of matrices. Frequently, we’ll multiply
square matrices by themselves (you can only mul-
tiply square matrices by themselves), and we’ll use
the standard notation for powers. The expression
Ap stands for the product of p copies of A. Since
matrix multiplication is associative, this definition
works, so long as p is a positive integer. But we can
extend the definition to p = 0 by making A0 = I,
and the usual properties will will still hold. That is,
ApAq = Ap+q and (Ap)q = Apq. Later, we’ll extend
powers to the case when A is an invertible matrix
and the power p is a negative integer.

Warning: because matrix multiplication is not
commutative in general, it is usually the case that
(AB)p 6= ApBp.
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Scalar matrices. A scalar matrix is a matrix
with the scalar r down the diagonal. That’s the
same thing as the scalar r times the identity ma-
trix. For instance,4 0 0

0 4 0
0 0 4

 = 4

1 0 0
0 1 0
0 0 1

 = 4I.

Among other things, that means that we can iden-
tify a scalar matrix with the scalar.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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