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Introduction to determinants. Every square
matrix A has a determinant, denoted either det(A)
or more commonly |A|, which is a number that tells
a lot about it. We’ll see, for instance, that A is
an invertible matrix if and only if |A| 6= 0. Also,
the determinant tells what the transformation de-
scribed by A does to area. Specifically, the absolute
value of the determinant tells you by what factor
any region is enlarged.

Determinants of small matrices. Before look-
ing at the general definition for n×n square matri-
ces, we’ll look at the cases when n is small, namely,
2 or 3.

Let A be the matrix

[
a b
c d

]
. Then we define

the determinant of A to be

det(A) = |A| =

∣∣∣∣ a b
c d

∣∣∣∣
= ad− bc.

So, the determinant of a 2 × 2 matrix is the prod-
uct of the two elements on the major diagonal mi-
nus the product of the two elements on the minor
diagonal. We’ve already seen an application of de-
terminants before in the computation of the inverse
of a 2× 2 matrix.

Now let A be a 3× 3 matrix

A =

 a b c
d e f
g h i

 .

Then we define the determinant of A to be det(A) =

|A| =∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei + bfg + cdh− ceg − afh− bdi.

There are six terms in this determinant. Each term
is a product of three elements, one element chosen
out of each row and column. All six possible ways of
choosing one element out of each row and column
are included. Three have minus signs and three
have plus signs.

Historical note. It’s very interesting that deter-
minants predate matrices. The study of determi-
nants was going well before anyone had any use
for matrices. Indeed, determinants were one of the
primary reasons why the theory of matrices was
created.

Matlab can find determinants. Let’s see
what it gets for one using the det function.

>> A=[1,3,5,7;2,4,8,6;0,1,5,3;1,1,0,0]

A =

1 3 5 7

2 4 8 6

0 1 5 3

1 1 0 0

>> det(A)

ans =

-2

An interesting matrix is the Hilbert matrix gen-
erated in Matlab using the hilb function. Note
that Matlab displays numbers decimally by de-
fault, but you can change that with the instruction
format rat.

>> H = hilb(5)

H =

1



1.0000 0.5000 0.3333 0.2500 0.2000

0.5000 0.3333 0.2500 0.2000 0.1667

0.3333 0.2500 0.2000 0.1667 0.1429

0.2500 0.2000 0.1667 0.1429 0.1250

0.2000 0.1667 0.1429 0.1250 0.1111

>> format rat

>> H

H =

1 1/2 1/3 1/4 1/5

1/2 1/3 1/4 1/5 1/6

1/3 1/4 1/5 1/6 1/7

1/4 1/5 1/6 1/7 1/8

1/5 1/6 1/7 1/8 1/9

>> det(H)

ans =

1/266716800000

That’s one small determinant!

Areas of triangles and parallelograms in
terms of determinants. You can determine the
area of a triangle in the plane with vertices at
P1 = (x1, y1), P2 = (x2, y2), and P3(x3, y3).
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If the vertices are at the position shown, where they
go around the triangle in a counterclockwise direc-
tion, you can determine the area by adding the ar-
eas of two trapezoids with tops P1P2 and P2P3, then
subtracting the area of the trapezoid with top P3P1.

The trapezoid with top P1P2 has area

1
2
(y1 + y2)(x1 − x2),

that with top P2P3 has area
1
2
(y2 + y3)(x2 − x3),

and that with top P3P1 is the negation of
1
2
(y3 + y1)(x3 − x1).

Adding those together gives
1
2
(x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3)

which equals half the value value of a 3 × 3 deter-
minant

Area of triangle = 1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
Note that if you exchange the names of two of

the vertices, then the value of the determinant is
negated. That means that you will either get the
area of the triangle or the negation of the area de-
pending on the order that you name the vertices.
If you name the vertices as you go around the tri-
angle in a counterclockwise direction, you’ll get the
area, but if you name them in a clockwise direction,
it’s the negation of the area. Right now, we’re not
interested in the sign of the determinant, so just
take the absolute value to get the actual area, but
that sign becomes very important when you want
to know the orientation of the triangle. When the
sign is included with the area, then this is called
the signed area of the triangle.

Likewise, the area of a parallelogram where any
three of its vertices are (x1, y1), (x2, y2), and (x3, y3)
is the absolute value of the determinant without
taking half of it.

Note that if the vertex (x3, y3) is placed at the
origin (0, 0), then the determinant simplifies to∣∣∣∣∣∣

x1 y1 1
x2 y2 1
0 0 1

∣∣∣∣∣∣ =

∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ .
That gives us a geometric interpretation of the 2×2
determinant as the signed area a certain parallelo-

gram with two sides being the vectors

[
x1

x2

]
and[

y1
y2

]
which are the columns of the matrix.
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Geometric interpretation of determinants in
higher dimensions. The last statement for ar-
eas of parallelograms can be extended to higher
dimensions. You can find the volume of a paral-
lelepiped in R3 as the determinant of a 3× 3.

Consider a parallelepiped whose edges are u, v,
and w.
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The signed volume of this parallelepiped is

Volume =

∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ .
We won’t prove this now, but we may prove it later
in the course.

Likewise, the n-dimensional analogue of signed
volume for an n-dimensional parallelepiped whose
edges are v1,v2, . . . ,vn is the determinant of the
matrix whose columns are those n vectors.

An application to multivariable calculus: Ja-
cobians. Jacobians are determinants used in sub-
stitution when you have multiple integrals. You’ll

see them when you study multivariable calculus (or
you already have if you’ve already studied it).

Recall that in calculus of one variable, when you
use substitution, you insert a derivative. When you

substitute u = g(x), with du =
du

dx
dx, the substi-

tution formula looks like∫
f(u) du =

∫
f(g(x))

du

dx
dx.

In higher dimensions, that derivative is replaced
by a determinant of partial derivatives. Here’s what
the change of variables formula looks like in dimen-
sion 2. ∫∫

f(u, v) du dv

=

∫∫
f(g(x, y), h(x, y))

∣∣∣∣∂u∂x ∂v
∂x

∂u
∂y

∂v
∂y

∣∣∣∣ dx dy
where u = g(x, y), v = h(x, y). Here ∂u

∂x
is some-

thing called the partial derivative of u with respect
to x, that is, the derivative of g(x, y) with respect
to x, and ∂v

∂x
, ∂u

∂y
, and ∂v

∂y
are three other partial

derivatives. We can’t go into much detail about
this in this course, but to more fully explain what’s
going on, we’ll look at one example.

The reason that particular determinant appears
in the integral is that it represents the signed area

of a parallelogram with the two edges u′ =
(

du
dx
, du
dy

)
and v′ =

(
dv
dx
, dv
dy

)
.

Example 1. We’ll look at how to make a change
of variables in this double integral∫∫

sin(u + v) cos(u− v) du dv

by making the substitution u = (x + y)/2 and v =
(x− y)/2 so that x = u + v and y = u− v.

First compute the four partial derivatives. The
first one, ∂u

∂x
is the partial derivative of (x + y)/2

with respect to x, which is 1
2
, because when you take

partial derivatives with respect to x, you treat y as
a constant. The second is ∂v

∂x
, the partial derivative
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of (x − y)/2 with respect to x, and that’s 1
2
, too.

The third is ∂u
∂y

, the partial derivative of (x + y)/2

with respect to y, and that’s 1
2

again. The fourth is
∂v
∂y

, the partial derivative of (x− y)/2 with respect

to y, which is −1
2
.

Therefore, the Jacobian is∣∣∣∣∂u∂x ∂v
∂x

∂u
∂y

∂v
∂y

∣∣∣∣ =

∣∣∣∣1/2 1/2
1/2 −1/2

∣∣∣∣ = −1/2

When you use that in the formula for substitution
in double integrals, that gives∫∫

sin(u + v) cos(u− v) du dv

=

∫∫
sinx cos y (−1

2
) dx dy

That’s enough to indicate one way that determi-
nants will be used in multivariable calculus.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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