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We characterized what determinant functions are
based on four properties, and we saw one construc-
tion for them. Here’s a quick summary of their
properties. The first four characterize them; the
others we proved.

A determinant function assigns to each square
matrix A a scalar associated to the matrix, denoted
det(A) or |A| such that

1. The determinant of an n×n identity matrix I
is 1. |I| = 1.

2. If the matrix B is identical to the matrix A
except the entries in one of the rows of B are
each equal to the corresponding entries of A
multiplied by the same scalar c, then |B| =
c |A|.

3. If the matrices A, B, and C are identical except
for the entries in one row, and for that row an
entry in A is found by adding the correspond-
ing entries in B and C, then |A| = |B|+ |C|.

4. If the matrix B is the result of exchanging two
rows of A, then the determinant of B is the
negation of the determinant of A.

5. The determinant of any matrix with an entire
row of 0’s is 0.

6. The determinant of any matrix with two iden-
tical rows is 0.

7. There is one and only one determinant func-
tion.

8. The determinant of a permutation matrix is
either 1 or −1 depending on whether it takes
an even number or an odd number of row in-
terchanges to convert it to the identity matrix.

Other properties of determinants. There are
several other important properties of determinants.

For instance, determinants can be evaluated by
cofactor expansion along any row, not just the first
row as we used to construct the determinant. We
won’t take the time to prove that. The idea of
the proof is straightforward—exchange the given
row with the first row and apply cofactor expan-
sion along the first row. The only difficultly with
the proof is keeping track of the sign of the deter-
minant.

As mentioned before, we won’t use cofactor ex-
pansion much since it’s not a practical way to eval-
uate determinants. Here are a couple of more useful
properties.

Theorem 1. If one row of a square matrix is a
multiple of another row, then its determinant is 0.

Proof. We saw that if two rows are the same, then
a square matrix has 0 determinant. By the second
property of determinants if we multiply one of those
rows by a scalar, the matrix’s determinant, which is
0, is multiplied by that scalar, so that determinant
is also 0. q.e.d.

Theorem 2. The determinant of a matrix is not
changed when a multiple of one row is added to
another.

Proof. Let A be the given matrix, and let B be the
matrix that results if you add c times row k to row
l, k 6= l. Let C be the matrix that looks just like
A except the lth row of C is c times the kth row.
Since one row of C is a multiple of another row of
C, its determinant is 0. By multilinearity of the
determinant (property 3), |A| = |B| + |C|. Since
|C| = 0, therefore |A| = |B|. q.e.d.
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An efficient algorithm for evaluating a ma-
trix. The three row operations are (1) exchange
rows, and that will negate the determinant, (2)
multiply or divide a row by a nonzero constant,
and that scales the determinant by that constant,
and (3) add a multiple of one row to another, and
that doesn’t change the determinant at all.

After you’ve row reduced the matrix, you’ll have
a triangular matrix, and its determinant will be the
product of its diagonal entries.

We’ll evaluate a couple of matrices by this
method in class.

Determinants, rank, and invertibility.
There’s a close connection between these for a
square matrix. We’ve seen that an n× n matrix A
has an inverse if and only if rank(A) = n. We can
add another equivalent condition to that, namely,
|A| 6= 0.

Theorem 3. The determinant of an n× n matrix
is nonzero if and only if its rank is n, that is to say,
if and only if it’s invertible.

Proof. The determinant of the matrix will be 0 if
and only if when it’s row reduced the resulting ma-
trix has a row of 0s, and that happens when its
rank is less than n. q.e.d.

Determinant of products and inverses.
These are rather important properties of determi-
nants. The first says |AB| = |A| |B|, and the sec-
ond says |A−1| = |A|−1 when A is an invertible
matrix.

Theorem 4. The determinant of the product of
two square matrices is the product of their deter-
minants, that is, |AB| = |A| |B|.

Proof. We’ll prove this in two cases, first when A
has rank less than n, then when A has full rank.
For the full rank case we’ll reduce the proof to the
case where A is an elementary case since it’s easy
to show the result in that case.

Case 1. Assume that the rank of A is less than
n. Then by the previous theorem, |A| = 0. Since

the rank of the product of two matrices is less than
or equal to the rank of each, therefore the rank of
AB is less than n, and, hence |AB| = 0. Thus, no
matter what B is, |AB| = |A| |B|.
Case 2. For this case assume the rank of A is n.
Then A can be expressed as a product of elementary
matrices A = E1E2 · · ·Ek. If we knew for each
elementary matrix E that |EB| = |E| |B|, then it
would follow that

|AB| = |E1E2 · · ·EkB|
= |E1| |E2| · · · |Ek| |B|
= |A| |B|

Thus, we can reduce case 2 to the special case where
A is an elementary matrix.

Elementary subcases. We’ll show that for each ele-
mentary matrix E that |EB| = |E| |B|. There are
three kinds of elementary matrices, and we’ll check
each one.

Elementary subcase 1. Suppose that E is the result
of interchanging two rows of the identity matrix I.
Then |E| = −1, and EB is the same as B except
those two rows are interchanged, so |EB| = −|EB|.
Thus, |EB| = |E| |B|.
Elementary subcase 2. Suppose that E is the result
of multiplying a row of I by a scalar c. Then |E| =
c, and EB is the same as B except that row is
multiplied by c, so |EB| = c |B|. Thus, |EB| =
|E| |B|.
Elementary subcase 3. Suppose that E is the result
of adding a multiple of one row of I to another.
Then |E| = 1, and EB is the same as B except
that that same multiple of one row of B is added
the same other of B, so |EB| = |B|. Again, |EB| =
|E| |B|. q.e.d.

Corollary 5. For an invertible matrix, the deter-
minant of its inverse is the reciprocal of its deter-
minant, that is, |A−1| = |A|−1.

Proof. According to the theorem, |A−1A| =
|A| |A−1|, but |A−1A| = |I| = 1, so |A| |A−1| = 1
from which it follows that |A−1| = |A|−1. q.e.d.
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More generally, |Ap| = |A|p for general p even
when p is negative so long as A is an invertible
matrix.

Determinants and transposes. So far, every-
thing we’ve said about determinants of matrices
was related to the rows of the matrix, so it’s some-
what surprising that a matrix and its transpose
have the same determinant. We’ll prove that, and
from that theorem we’ll automatically get corre-
sponding statements for columns of matrices that
we have for rows of matrices.

Theorem 6. The determinant of the transpose of
a square matrix is equal to the determinant of the
matrix, that is, |At| = |A|.

Proof. We’ll prove this like the last theorem. First
in the case where the rank of A is less than n, then
the case where the rank of A is n, and for the sec-
ond case we’ll write A as a product of elementary
matrices.

Case 1. Assume that the rank of A is less than n.
Then its determinant is 0. But the rank of a matrix
is the same as the rank of its transpose, so At has
rank less than n and its determinant is also 0.

Case 2. For this case assume the rank of A is n.
Express A as a product of elementary matrices, A =
E1E2 · · ·Ek. If we knew for each elementary matrix
E that |Et| = |E|, then it would follow that

|A| = |E1E2 · · ·Ek|
= |E1| |E2| · · · |Ek|
= |Et

1| |Et
2| · · · |Et

k|
= |Et

1E
t
2 · · ·Et

k| = |At|

(Note how we used the property that the transpose
of a product equals the product of the traposes.)

Thus, we can reduce case 2 to the special case
where A is an elementary matrix. The details that
|Et| = |E| for each of the three kinds of elementary
matrices are omitted here since that’s easy to verify.

q.e.d.

The following properties of determinants that re-
late to the columns of a matrix follow from this
theorem and the corresponding properties for rows
of a matrix.

1. If the matrix B is identical to the matrix A
except the entries in one of the columns of B
are each equal to the corresponding entries of
A multiplied by the same scalar c, then |B| =
c |A|.

2. If the matrices A, B, and C are identical ex-
cept for the entries in one column, and for
that column an entry in A is found by adding
the corresponding entries in B and C, then
|A| = |B|+ |C|.

3. If the matrix B is the result of exchanging two
columns of A, then the determinant of B is the
negation of the determinant of A.

4. The determinant of any matrix with an entire
column of 0’s is 0.

5. The determinant of any matrix with two iden-
tical columns is 0.

6. The determinant of a permutation matrix is
either 1 or −1 depending on whether it takes
an even number or an odd number of column
interchanges to convert it to the identity ma-
trix.

7. The determinant of a matrix can be evaluated
by cofactor expansion along any column.

Cramer’s rule. This is a method based on de-
terminants to find the solution to a system of n
equations in n unknowns when there is exactly one
solution. The solution is has the determinant in the
denominator, and the only time the determinant is
not zero is when there’s a unique solution.

Cramer’s rule is one of the oldest applications of
determinants. It’s not an efficient method to solve
a system since row reduction is faster, but it’s an
interesting use of determinants.
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Here’s an example to show how to apply
Cramer’s rule. Let’s suppose we have the follow-
ing system of three equations in three unknowns.

x + y + 3z = 6
2x + 3y − 4z = −2
3x − 2y + 5z = 7

First, compute the determinant ∆ of the 3× 3 co-
efficient matrix.

∆ =

∣∣∣∣∣∣
1 1 3
2 3 −4
3 −2 5

∣∣∣∣∣∣ = −54

Next, replace the first column by the constant vec-
tor, and compute that determinant.

∆x =

∣∣∣∣∣∣
6 1 3
−2 3 −4

7 −2 5

∣∣∣∣∣∣ = −27

Then in the unique solution, x = ∆x/∆ = 1
2
. Next,

replace the second column by the constant vector,
and compute that determinant.

∆y =

∣∣∣∣∣∣
1 6 3
2 −2 −4
3 7 5

∣∣∣∣∣∣ = −54

So y = ∆y/∆ = 1. Likewise, replace the third
column by the constant vector.

∆z =

∣∣∣∣∣∣
1 1 6
2 3 −2
3 −2 7

∣∣∣∣∣∣ = −81

which gives z = 3
2
. Thus, the unique solution is

(x, y, z) = (1
2
, 1, 3

2
).

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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