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Frequently in mathematics we look at two alge-
braic structures A and B of the same kind and want
to compare them. For instance, we might think
they’re really the same thing, but they have dif-
ferent names for their elements. That leads to the
concept of isomorphism f : A

'→ B, and we’ll talk
about that first. Other times we’ll know they’re
not the same thing, but there is a relation between
them, and that will lead to the next concept, ho-
momorphism, f : A→ B. We’ll then look as some
special homomorphisms such as monomorphisms.
When we have a homomorphism f : A → A, we’ll
call it an endomorphism, and when an isomorphism
f : A

'→ A, we’ll call it an automorphism. We’ll
take each of these variants in turn.

Injections, surjections, and bijections of
functions between sets. These are words that
describe certain functions f : A → B from one set
to another.

An injection, also called a one-to-one function
is a function that maps distinct elements to dis-
tinct elements, that is, if x 6= y, then f(x) 6= f(y).
Equivalently, if f(x) = f(y) then x = y. If A
is a subset of B, then there is a natural injection
ι : A → B, called the inclusion function, defined
by ι(x) = x.

A surjection, also called an onto function is one
that includes all of B in its image, that is, if y ∈ B,
then there is an x ∈ A such that f(x) = y.

A bijection, also called a one-to-one correspon-
dence, is a function that is simultaneously injective
and bijective. Another way to describe a bijection
f : A→ B is to say that there is an inverse function
g : B → A so that the composition g ◦ f : A → A

is the identity function on A while f ◦ g : B → B is
the identity function on B. The usual notation for
the function inverse to f is f−1.

If f and g are inverse to each other, that is, if g
is the inverse of f , g = f−1, then f is the inverse of
g, f = g−1. Thus, (f−1)−1 = f .

An important property of bijections is that you
can convert equations involving f to equations in-
volving f−1:

f(x) = y if and only if x = f−1(y)

.

Isomorphisms of algebraic structures. There
are lots of different kinds of algebraic structures.
We’ve already studied two of them, namely, fields
and vector spaces.

We’ll say two algebraic structures A and B are
isomorphic if they have exactly the same structure,
but their elements may be different. For instance,
let A be the vector space R[x] of polynomials in
the variable x, and let B be the vector space R[y]
of polynomials in y. They’re both just polynomials
in one variable, it’s just that the choice of variable
is different in the two rings.

We’re studying vector spaces, so we need a pre-
cise definition of isomorphism for them.

Definition 1 (Isomorphism of vector spaces). Two
vector spaces V and W over the same field F are
isomorphic if there is a bijection T : V → W which
preserves addition and scalar multiplication, that
is, for all vectors u and v in V , and all scalars
c ∈ F ,

T (u + v) = T (u) + T (v) and T (cv) = cT (v).

The correspondence T is called an isomorphism of
vector spaces.

When T : V → W is an isomorphism we’ll write
T : V

'→ W if we want to emphasize that it is an
isomorphism. When V and W are isomorphic, but
the specific isomorphism is not named, we’ll just
write V ∼= W .
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Of course, the identity function IV : V
'→ V is

an isomorphism.
After we introduce linear transformations (which

is what homomorphisms of vector spaces are
called), we’ll have another way to describe isomor-
phisms.

You can prove various properties of vector space
isomorphisms from this definition.

Since the structure of vector spaces is defined in
terms of addition and scalar multiplication, if T
preserves them, it will preserve structure defined in
terms of them. For instance, T preserves 0, nega-
tion, subtraction, and linear transformations.

Theorem 2. If T : V
'→ W is an isomorphism of

vector spaces, then its inverse T−1 : W
'→ V is also

an isomorphism.

Proof. Since T is a bijection, T−1 exists as a func-
tion W → V . We have to show T−1 preserves ad-
dition and scalar multiplication.

First, we’ll do addition. Let w and x be elements
of W . We have to show that

T−1(w + x) = T−1(w) + T−1(x).

We’ll show that by simplifying it to logically equiv-
alent statements until we reach one which we know
is true. Since T and T−1 are inverse functions, that
equation holds if and only if

w + x = T (T−1(w) + T−1(x)).

Since T is an isomorphism, we can rewrite that as

w + x = T (T−1(w)) + T (T−1(x))

which simplifies to w + x = w + x which is true.
Scalar multiplication is left to you. Show

T−1(cw) = cT−1(w). q.e.d.

We’ll omit the proof of the next theorem.

Theorem 3. If S : V
'→ W and T : W

'→ X are
both isomorphisms of vector spaces, then so is their
composition (T ◦ S) : V

'→ X.

Example 4. Consider P3, the vector space of poly-
nomials over R of degree 3 or less. Define T : P3

'→
R4 by T (a1x

3 + a2x
2 + a3x + a4) = (a1, a2, a3, a4).

It just associates to a polynomial its 4-tuple of co-
efficients starting with the coefficient of x3 and go-
ing down in degree. This T preserves addition and
scalar multiplication, it is one-to-one, and it is onto.
(Those statements are easy to verify.)

This is not the only isomorphism P3
'→ R4. A

cubic polynomial is determined by its value at any
four points. The association f(x) to the 4-tuple
(f(1), f(2), f(3), f(4)) is also an isomorphism.

Theorem 5. If T : V → W is an isomorphism,
then T carries linearly independent sets to linearly
independent sets, spanning sets to spanning sets,
and bases to bases.

Proof. For the first statement, let S be a set of lin-
early independent vectors in V . We’ll show that its
image T (S) is a set of linearly independent vectors
in W . If 0 were a nontrivial linear combination of
vectors in T (S), then an application of T−1 would
yield a nontrivial linear combination of vectors in
S, but there is none since S is independent. There-
fore, T (S) is linear independent.

For the second statement, let w be any vector in
W , then T−1(w) is a linear combination of vectors
in V . Apply T to that linear combination to see
that w is a linear combination of vectors in W .

Since T carries both independent and spanning
sets from V to W , it carries bases to bases. q.e.d.

More generally, any property of vector spaces de-
fined in terms of the structure of vector spaces (ad-
dition and scalar multiplication) is preserved by iso-
morphisms.

Coordinates with respect to a basis deter-
mine an isomorphism. One of the main uses of
a basis β = (b1,b2, . . . ,bn) for a vector space V
over a field is to impose coordinates on V . Each
vector v in V is a unique linear combination of of
the basis vectors

v = v1b1 + v2b2 + · · ·+ vnbn.
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The coefficients are used as coordinates for v with
the respect to the basis β

[v]β =


v1
v2
...
vn

 .
Let’s denote the function that assigns these co-

ordinates φβ.

Theorem 6. The correspondence v to [v]β is an

isomorphism φβ : V
'→ F n.

To prove that theorem, you’ll need to note that
this is a bijection, prove that [u+v]β = [u]β +[v]β,
and prove that [cv]β = c[v]β.

Since the correspondence φβ is an isomorphism,
it means we can work with coordinates with respect
to a basis β of V just like ordinary coordinates.

Corollary 7. Two finite dimensional vector spaces
are isomorphic if and only if they have the same
dimension.

Proof. If they’re isomorphic, then there’s an iso-
morphism T from one to the other, and it carries a
basis of the first to a basis of the second. Therefore
they have the same dimension.

On the other hand, if they have the same dimen-
sion n, then they’re each isomorphic to F n, and
therefore they’re isomorphic to each other. q.e.d.

Linear transformations. Next we’ll look at lin-
ear transformations of vector spaces.

Whereas isomorphisms are bijections that pre-
serve the algebraic structure, homomorphisms are
simply functions that preserve the algebraic struc-
ture. In the case of vector spaces, the term linear
transformation is used in preference to homomor-
phism.

Math 130 Home Page at
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