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One of the principles of modern mathematics is that functions between objects are as
important as the objects themselves. The objects we’re looking at are vector spaces, and the
functions that preserve the structure of vector spaces are called linear transformations.

The structure of vector space V over a field F is its addition and scalar multiplication,
or, if you prefer, its linear combinations.

Definition 1. A linear transformation from one vector space V to another W is a function
T that preserves vector addition and scalar multiplication. In more detail, a linear transfor-
mation T : V → W is a function such that

T (v + w) = T (v) + T (w) and T (cv) = cL(v)

for every vector v and w in V and every scalar c.

The vector space V is called the domain of T while the vector space W is called the
codomain of T .

The term linear operator is also used when W = V , especially when the elements of the
vector spaces are functions.

We’ve already discussed isomorphisms. An isomorphism T : V
'→ W is a linear transfor-

mation which is also a bijection; its inverse function T−1 : W
'→ V is also an isomorphism.

Properties of linear transformations. A few important properties follow directly from
the definition. For instance, every linear transformation sends 0 to 0.

Also, linear transformations preserve subtraction since subtraction can we written in terms
of vector addition and scalar multiplication.

A more general property is that linear transformations preserve linear combinations. For
example, if v is a certain linear combination of other vectors s, t, and u, say v = 3s+5t−2u,
then T (v) is the same linear combination of the images of those vectors, that is T (v) =
3T (s) + 5T (t)− 2T (u).

This property can be stated as the identity

T (c1v1 + c2v2 + · · ·+ ckvk) = c1T (v1) + c2T (v2) + · · ·+ ckT (vk)

The property of preserving linear combinations is so important, that in some texts, a linear
transformation is defined as a function that preserves linear combinations.
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Example 2. Let V andW both be R[x], the vector space of polynomials with real coefficients.
You’re familiar with some linear operators on it. Differentiation d

dx
: R[x]→ R[x] is a linear

operator since (1) the derivative of a polynomial is another polynomial, (2) the derivative of
a sum is the sum of derivatives, and (3) the derivative of a constant times a polynomial is
the constant times the derivative of the polynomial.

Integrals are also linear operators. The definite integral
∫ x
a

over the interval [a, x] where
a is any constant is also a linear operator.

The Fundamental Theorem of Calculus relates these two operators by composition. Let
D stand for d

dx
, and I stand for

∫ x
a

. Then the ftc says IDf = f − f(a), while the inverse
ftc says DIf = f . These don’t quite say that D and I are inverse linear operators since
IDf is f − f(a) instead of f itself, but they’re almost inverse operators.

Example 3 (Projection and inclusion functions). The projection functions from the product
of two vector spaces to those vector spaces are linear transformations. They pick out the
coordinates. The first projection π1 : V × W → V is defined by π1(v,w) = v, and the
second projection π2 : V ×W → W is defined by π1(v,w) = w. Since the operations on the
product V ×W were defined coordinatewise in the first place, these projections will be linear
transformations.

There are also inclusion functions from the vector spaces to their product. ι1 : V → V ×W
is defined by ι1(v) = (v,0), and ι2 : V → V ×W is defined by ι2(w) = (0,w).

There are some interesting connections among the projection and inclusion functions. For
one thing, the composition π1 ◦ ι1 is the identity transformation 1V : V → V on V , and the
composition π2◦ι2 is the identity transformation 1W : W → W on W . The other compositions
are 0, that is to say, π2 ◦ ι1 : V → W and π1 ◦ ι2 : W → V are both 0 transformations.
Furthermore, summing the reverse compositions (ι1 ◦ π1) + (ι2 ◦ π2) : V ×W → V ×W gives
the identity function 1V×W : V ×W → V ×W on V ×W .
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The symmetry of the equations and diagrams suggest that inclusion and projection func-
tions are two halves of a larger structure. They are, and later we’ll see how they’re ‘dual’ to
each other. Because of that, we’ll use a different term and different notation for products of
vector spaces. We’ll call the product V ×W the direct sum of the vector spaces V and W
and denote it V ⊕W from now on.

The standard matrix for a linear transformations T : Rn → Rm. Our vector spaces
usually have coordinates. We can treat any vector space of dimension n as if it were Rn (or
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F n if our scalar field is something other than R). What do our linear transformations look
like then?

Each vector is a linear combination of the basis vectors

v = (v1, . . . , vn) = v1e1 + · · ·+ vnen.

Therefore,
T (v) = v1T (e1) + · · ·+ vnT (en).

Thus, when you know where T sends the basis vectors, you know where T sends all the rest
of the vectors. Suppose that

T (e1) = (a11, a21, . . . , am1)

T (e2) = (a12, a22, . . . , am2)

. . . = . . .

T (en) = (a1n, a2n, . . . , amn)

Then knowing all the scalars aij tells you not only where T sends the basis vectors, but where
it sends all the vectors.

We’ll put all these scalars aij in a matrix, but we’ll do it column by column. We already
have a notation for columns, so let’s use it.

[T (e1)]ε =


a11
a21
...
am1

 , [T (e2)]ε =


a12
a22
...
am2

 , . . . , [T (en)]ε =


a1n
a2n
...

amn


where ε denotes the standard basis of Rm. Now place them in a rectangular m× n matrix.

A =
[

[T (e1)]ε [T (e2)]ε · · · [T (en)]ε
]

=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Thus, the matrix A determines the transformation T .

This matrix A, whose jth column is the m-vector [T (ej)]ε, is called the standard matrix
representing the linear transformation T . We’ll also denote it as [T ]εε, where two ε’s are used
since we used one standard basis ε for Rn and another standard bases ε for Rm.

Thus, a linear transformation T : Rn → Rm determines anm×nmatrix A, and conversely,
an m× n matrix A determines a linear transformation T : Rn → Rm.

Evaluation. Since the matrix A holds all the information to determine the transformation
T , we’ll want to see how to use it to evaluate T at a vector v. Given A and the v, how do
you compute T (v)?
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Well, what are v and T (v) in terms of coordinates? Let v have coordinates (v1, . . . , vn).
Then

T (v)

= v1T (e1) + v2T (e2) + · · ·+ vnT (en)

= v1(a11, a21, . . . , am1) + v2(a12, a22, . . . , am2) + · · ·+ vn(a1n, a2n, . . . , amn)

= (v1a11 + v2a12 + · · ·+ vna1n, v1a21 + v2a22 + · · ·+ vna2n, . . . , v1am1 + v2am2 + · · ·+ vnamn)

For various reasons, both historical and for simplicity, we’re writing our vectors v and
T (v) as column vectors. Then

[v]ε =


v1
v2
...
vn

 and [T (v)]ε =


v1a11 + v2a12 + · · ·+ vna1n
v1a21 + v2a22 + · · ·+ vna2n

...
v1am1 + v2am2 + · · ·+ vnamn


Our job is to take the matrix A and the column vector for v and produce the column vector
for T (v). Let’s see what that the equation Av = T (v), or more properly, A[v]ε = [T (v)]ε
looks like in terms of matrices.

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



v1
v2
...
vn

 =


v1a11 + v2a12 + · · ·+ vna1n
v1a21 + v2a22 + · · ·+ vna2n

...
v1am1 + v2am2 + · · ·+ vnamn


Aha! You see it! If you take the elements in the ith row from A and multiply them in

order with elements in the column of v, then add those n products together, you get the ith

element of T (v).
With this as our definition of multiplication of an m×n matrix by a n×1 column vector,

we have Av = T (v).
So far we’ve only looked at the case when the second matrix of a product is a column

vector. Later on we’ll look at the general case.

Linear operators on Rn, eigenvectors, and eigenvalues. Very often we are interested
in the case when m = n. A linear transformation T : Rn → Rn is also called a linear
transformation on Rn or a linear operator on Rn. The standard matrix for a linear operator
on Rn is a square n× n matrix.

One particularly important square matrix is the identity matrix I whose ijth entry is δij,
where δii = 1 but if i 6= j then δij = 0. In other words, the identity matrix I has 1’s down
the main diagonal and 0’s elsewhere. It’s important because it’s the matrix that represents
the identity transformation Rn → Rn.

When the domain and codomain of a linear operator are the same, there are more questions
you can ask of it. In particular, there may be some fixed points, that is, vectors v such that
T (v) = v. Or there may be points sent to their negations, T (v) = −v.

When a linear operator T sends a vector to a scalar multiple of itself, then that vector
is called an eigenvector of T , and the scalar is called the corresponding eigenvalue. All the
eigenvectors associated to a specific eigenvalue form an eigenspace for that eigenvalue.
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For instance, fixed points are eigenvectors with eigenvalue 1, and the eigenspace for 1
consists of the subpace of fixed points.

We’ll study eigenvectors and eigenvalues in detail later on, but we’ll mention them as we
come across them. They tell you something about the geometry of the linear operator.

Math 130 Home Page at http://math.clarku.edu/~ma130/
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