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Sir William Rowan Hamilton, who early found that his road [to success with vec-
tors] was obstructed—he knew not by what obstacle—so that many points which
seemed within his reach were really inaccessible. He had done a considerable
amount of good work, obstructed as he was, when, about the year 1843, he per-
ceived clearly the obstruction to his progress in the shape of an old law which,
prior to that time, had appeared like a law of common sense. The law in question
is known as the commutative law of multiplication.

P. Kelland (1808–1879) and P. G. Tait (1831–1901), 1873

The quaternions. The quaternions H are an extension of the complex numbers C. A
complex number can be defined as an expression a+ bi where a and b are real numbers and i
is a formal symbol satisfying i2 = −1. We’ll add two more formal symbols, j and k to define
H.

We can define a quaternion a as an expression

a = a0 + a1i + a2j + a3k

where a0, a1, a2, and a3 are real numbers and i, j, and k are formal symbols satisfying the
properties

i2 = j2 = k2 = −1

and
ij = k, jk = i, ki = j.

The i, j, and k are all square roots of −1, but they don’t commute as you can show from the
definition that

ji = −k, kj = −i, ik = −j.

This doesn’t lead to a commutative multiplication, but note that if a is real (i.e., its pure
quaternion parts a1, a2, and a3 are all 0), then a will commute with any quaternion b.

The quaternions are collectively denoted H in honor of Hamilton, their inventor.
Addition and subtraction are coordinatewise (just like in the complex numbers C).

(a0 + a1i+ a2j + a3k)± (b0 + b1i+ b2j + b3k) = (a0± b0) + (a1± b1)i+ (a2± b2)j + (a3± b3)k
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Here’s multiplication.

(a0 + a1i + a2j + a3k) (b0 + b1i + b2j + b3k)

= (a0b0 − a1b1 − a2b2 − a3b3)

+ (a0b1 + a1b0 + a2b3 − a3b2)i

+ (a0b2 − a1b3 + a2b0 + a3b1)j

+ (a0b3 + a1b2 − a2b1 − a3b0)k

All the usual properties of addition, subtraction, and multiplication hold in H except one.
Multiplication in anticommutative; if a and b are two pure quaternions, that is, quaternions
with no real part then

ab = −ba.

Division works, too; reciprocals exist for all quaternions except 0. We can use a variant of
rationalizing the denominator to find the reciprocal of a quaternion.

1

a0 + a1i + a2j + a3k
=

a0 − a1i− a2j − a3k

(a0 − a1i− a2j − a3k)(a0 + a1i + a2j + a3k)

=
a0 − a1i− a2j − a3k

a20 + a21 + a22 + a23

Thus, a nonzero quaternion a0 +a1i+a2j+a3k, that is, one where not all of the real numbers
a0, a1, a2, and a3 are 0, has an inverse, since the denominator a20 + a21 + a22 + a23 is a nonzero
real number.

The expression a0−a1i−a2j−a3k used to rationalize the denominator is the conjugate of
the original quaternion a0+a1i+a2j+a3k. The standard notation for denoting the conjugate
of a quaternion is to place a bar over it. Thus

a0 + a1i + a2j + a3k = a0 − a1i− a2j − a3k.

The norm or absolute value of a quaternion a by |a|2 = aa. It’s a nonnegative real number,
so it has a square root |a|.

Thus, if a is a nonzero quaternion, then its inverse is

1

a
=

a

|a|2
.

Note that the norm of a product is the product of the norms since

|ab|2 = abab = abba = a|b|2a = aa|b|2 = |a|2 |b|2.

Quaternions and geometry. Each quaternion a is the sum of a real part a0 and a pure
quaternion part a1i + a2j + a3k. Hamilton called the real part a scalar and pure quaternion
part a vector. We can interpret a1i + a2j + a3k as a vector a = (a1, a2, a3) in R3. Addition
and subtraction of pure quaternions then are just ordinary vector addition and subtraction.

Hamilton recognized that the product of two vectors (pure quaternions) had both a vector
component and a scalar component (the real part). The vector component of the product
ab of two pure quaternions Hamilton called the vector product, now often denoted a × b or

2



a∧b, and called the cross product or the outer product. The negation of the scalar component
Hamilton called the scalar product, now often denoted a ·b, (a,b), 〈a,b〉, or 〈a|b〉 and called
the dot product or the inner product. Thus

ab = a× b− a · b.

Hamilton’s quaternions were very successful in the 19th century in the study of three-
dimensional geometry.

Here’s a typical problem from Kelland and Tait’s 1873 Introduction to Quaternions. If
three mutually perpendicular vectors be drawn from a point to a plane, the sum of the
reciprocals of the squares of their lengths is independent of their directions.

Matrices were invented later in the 19th century. (But determinants were invented earlier!)
Matrix algebra supplanted quaternion algebra in the early 20th century because (1) they
described linear transformations, and (2) they weren’t restricted to three dimensions.

Math 130 Home Page at http://math.clarku.edu/~ma130/
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