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Definition 1. Let T : V → W be a linear trans-
formation between vector spaces. The kernel of T ,
also called the null space of T , is the inverse image
of the zero vector, 0, of W ,

ker(T ) = T−1(0) = {v ∈ V |Tv = 0}.

It’s sometimes denoted N(T ) for null space of T .
The image of T , also called the range of T , is the

set of values of T ,

T (V ) = {T (v) ∈ W |v ∈ V }.

This image is also denoted im(T ), or R(T ) for range
of T .

Both of these are vector spaces. ker(T ) is a sub-
space of V , and T (V ) is a subspace of W . (Why?
Prove it.)

We can prove something about kernels and im-
ages directly from their definition.

Theorem 2. Let V
T→ W and W

U→ X be linear
transformations. Then

ker(T ) ⊆ ker(U ◦ T )

and

im(U ◦ T ) ⊆ im(U).

Proof. For the first statement, just note that
T (v) = 0 implies U(T (v)) = 0. For the second
statement, just note that an element of the form
U(T (v) in X is automatically of the form U(w)
where w = T (v). q.e.d.

Definition 3. The dimensions of the kernel and
image of a transformation T are called the trans-
formation’s rank and nullity, and they’re denoted
rank(T ) and nullity(T ), respectively. Since a ma-
trix represents a transformation, a matrix also has
a rank and nullity.

For the time being, we’ll look at ranks and nullity
of transformations. We’ll come back to these topics
again when we interpret our results for matrices.

The above theorem implies this corollary.

Corollary 4. Let V
T→ W and W

U→ X. Then

nullity(T ) ≤ nullity(U ◦ T )

and
rank(U ◦ T ) ≤ rank(U).

Systems of linear equations and linear trans-
formations. We’ve seen how a system of m lin-
ear equations in n unknowns can be interpreted as a
single matrix equation Ax = b, where x is the n×1
column vector whose entries are the n unknowns,
and b is the m × 1 column vector of constants on
the right sides of the m equations.

We can also interpret a system of linear equations
in terms of a linear transformation. Let the linear
transformation T : Rn → Rm correspond to the
matrix A, that is, T (x) = Ax. Then the matrix
equation Ax = b becomes

T (x) = b.

Solving the equation means looking for a vector
x in the inverse image T−1(b). It will exist if and
only if b is in the image T (V ).

When the system of linear equations is homoge-
neous, then b = 0. Then the solution set is the
subspace of V we’ve called the kernel of T . Thus,
kernels are solutions to homogeneous linear equa-
tions.

When the system is not homogeneous, then the
solution set is not a subspace of V since it doesn’t
contain 0. In fact, it will be empty when b is not in
the image of T . If it is in the image, however, there
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is at least one solution a ∈ V with T (a) = b. All
the rest can be found from a by adding solutions x
of the associated homogeneous equations, that is,

T (a + x) = b iff T (x) = 0.

Geometrically, the solution set is a translate of the
kernel of T , which is a subspace of V , by the vector
a.

Example 5. Consider this nonhomogeneous linear
system Ax = b:[

2 0 1
1 1 3

]xy
z

 =

[
1
2

]
Solve it by row reducing the augmented matrix[

2 0 1 1
1 1 3 2

]
to [

1 0 1/2 1/2
0 1 5/2 3/2

]
Then z can be chosen freely, and x and y deter-
mined from z, that is,

x =

xy
z

 =

1
2
− 1

2
z

3
2
− 5

2
z

z

 =

1
2
3
2

0

+

−1
2

−5
2

1

 z
This last equation is the parametric equation of a
line in R3, that is to say, the solution set is a line.
But it’s not a line through the origin. There is,
however, a line through the origin, namely

x =

xy
z

 =

−1
2

−5
2

1

 z
and that line is the solution space of the associated
homogeneous system Ax = 0. Furthermore, these

two lines are parallel, and the vector

1/2
3/2
0

 shifts

the line through the origin to the other line. In
summary, for this example, the solution set for the
nonhomogeneous equation Ax = b is a line in R3

parallel to the solution space for the homogeneous
equation Ax = 0.

In general, the solution set for the nonhomoge-
neous equation Ax = b won’t be a one-dimensional
line. It’s dimension will be the nullity of A, and it
will be parallel to the solution space of the associ-
ated homogeneous equation Ax = 0.

The dimension theorem. The rank and nullity
of a transformation are related. Specifically, their
sum is the dimension of the domain of the trans-
formation. That equation is sometimes called the
dimension theorem.

In terms of matrices, this connection can be
stated as the rank of a matrix plus its nullity equals
the number of rows of the matrix.

Before we prove the Dimension Theorem, first
we’ll find a characterization of the image of a trans-
formation.

Theorem 6. The image of a transformation is
spanned by the image of the any basis of its do-
main. For T : V → W , if β = {b1,b2, . . . ,bn} is a
basis of V , then T (β) = {T (b1), T (b2), . . . , T (bn)}
spans the image of T .

Although T (β) spans the image, it needn’t be a
basis because its vectors needn’t be independent.

Proof. A vector in the image of T is of the form
T (v) where v ∈ V . But β is a basis of V ,
so v is a linear combination of the basis vectors
{b1, . . . ,bn}. Therefore, T (v) is same linear combi-
nation of the vectors T (b1), . . . , T (bn). Therefore,
every vector in the image of T is a linear combina-
tion of vectors in T (β). q.e.d.

Theorem 7 (Dimension Theorem). If the domain
of a linear transformation is finite dimensional, then
that dimension is the sum of the rank and nullity
of the transformation.

Proof. Let T : V → W be a linear transformation,
let n be the dimension of V , let r be the rank of T
and k the nullity of T . We’ll show n = r + k.

Let β = {b1, . . . ,bk} be a basis of the kernel
of T . This basis can be extended to a basis γ =
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{b1, . . . ,bk, . . . ,bn} of all of V . We’ll show that
the image of the vectors we appended,

C = {T (bk+1), . . . , T (bn)}

is a basis of T (V ). That will show that r = n − k
as required.

First, we need to show that the set C spans the
image T (V ). From the previous theorem, we know
that T (γ) spans T (V ). But all the vectors in T (β)
are 0, so they don’t help in spanning T (V ). That
leaves C = T (γ)− T (β) to span T (V ).

Next, we need to show that the vectors in C are
linearly independent. Suppose that 0 is a linear
combination of them,

ck+1T (bk+1) + · · ·+ cnT (bn) = 0

where the ci’s are scalars. Then

T (ck+1bk+1 + · · ·+ bnvn) = 0

Therefore, v = ck+1bk+1 + · · · + cnbn lies in the
kernel of T . Therefore, v is a linear combination of
the basis vectors β, v = c0b0+· · ·+ckbk. These last
two equations imply that 0 is a linear combination
of the entire basis γ of V ,

c0b0 + · · ·+ ckbk − ck+1bk+1 − · · · − cnbn = 0.

Therefore, all the coefficients ci are 0. Therefore,
the vectors in C are linearly independent.

Thus, C is a basis of the image of T . q.e.d.

There are several results that follow from this
Dimension Theorem.

Characterization of one-to-one transforma-
tions. Recall that a function f is said to be
a one-to-one function if whenever x 6= y then
f(x) 6= f(y). That applies to transformations as
well. T : V → W is one-to-one when u 6= v implies
T (u) 6= T (v). An alternate term for one-to-one is
injective, and yet another term that’s often used for
transformations is monomorphism.

Which transformations are one-to-one can be de-
termined by their kernels.

Theorem 8. A transformation is one-to-one if and
only if its kernel is trivial, that is, its nullity is 0.

Proof. Let T : V → W . Suppose that T is one-to-
one. Then since T (0) = 0, therefore T can send no
other vector to 0. Thus, the kernel of T consists
of 0 alone. That’s a 0-dimensional space, so the
nullity of T is 0.

Conversely, suppose that the nullity of T is 0,
that is, its kernel consists only of 0. We’ll show T is
one-to-one. Suppose that u 6= v. Then u− v 6= 0.
Then u − v 6= 0 does not lie in the kernel of T
which means that T (u − v) 6= 0. But T (u − v) =
T (u) − T (v), therefore T (u) 6= T (v). Thus, T is
one-to-one. q.e.d.

Since the rank plus the nullity of a transforma-
tion equals the dimension of its domain, r+ k = n,
we have the following corollary.

Corollary 9. For a transformation T whose do-
main is finite dimensional, T is one-to-one if and
only if that dimension equals its rank.

Characterization of isomorphisms. If two
vector spaces V and W are isomorphic, their prop-
erties with respect to addition and scalar multipli-
cation will be the same. A subset of V will span V
if and only if its image in W spans W . It’s indepen-
dent in V if and only if its image is independent in
W . Therefore, an isomorphism sends any basis of
the first to a basis of the second. And that means

Theorem 10. Isomorphic vector spaces have the
same dimension.

We’ll be interested in which linear transforma-
tions are isomorphisms. The Dimension Theorem
gives us some criteria for that.

Theorem 11. Let T : V → W be a linear trans-
formation be a transformation between two vector
spaces of the same dimension. Then the following
statements are equivalent.

(1) T is an isomorphism.
(2) T is one-to-one.
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(3) The nullity of T is 0, that is, its kernel is
trivial.

(4) T is onto, that is, the image of T is W .
(5) The rank of T is the same as the dimension

of the vector spaces.

Proof. (2) and (3) are equivalent by a previous the-
orem. (4) and (5) are equivalent by the definition of
rank. Since n = r + k, (3) is equivalent to (5). (1)
is equivalent to the conjunction of (2) and (3), but
they’re equivalent to each other, so they’re equiva-
lent to (1). q.e.d.

Math 130 Home Page at
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