

Name:	
Mailbox number:	

Math 131 Multivariate Calculus Final Exam 7 May 2010

You may refer to two sheet of notes on this test. You may use a calculator. You may leave your answers as expressions such as $e^2\sqrt{\frac{\sin^2(\pi/6)}{1-\ln 10}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

- 1. [16; 8 points each part] On conservative vector fields. We proved that a conservative vector field \mathbf{F} on a simply connected region is the gradient of some scalar field f.
- **a.** Verify that the vector field **F** given by $\mathbf{F}(x,y,z) = (2x+y,x+\cos z,-y\sin z)$ has curl 0.

b. Find a scalar potential field f on \mathbf{R}^3 whose gradient is \mathbf{F} .

2. [16] On Green's theorem. Recall that Green's theorem equates a path integral over the boundary of a two-dimensional region D to a double integral over D.

$$\oint_{\partial D} M \, dx + N \, dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy.$$

Let **F** be the vector field defined on \mathbf{R}^2 by $\mathbf{F}(x,y) = (y^2,x^2)$. Let C be the path formed by the square with vertices (0,0), (1,0), (1,1), and (0,1), oriented counterclockwise. Use Green's theorem to convert the vector line integral $\oint_C \mathbf{F} \cdot d\mathbf{s}$ into a double integral. Your double integral should have only the variables x and y, and it should have limits of integration for both x and y. Don't evaluate the resulting double integral.

3. [18; 6 points each part] On scalar line integrals. Recall that the scalar line integral of a scalar field f on a path parameterized by \mathbf{x} is

$$\int_{\mathbf{x}} f \, ds = \int_{a}^{b} f(\mathbf{x}(t)) \|\mathbf{x}'(t)\| \, dt.$$

Tom Sawyer is whitewashing a picket fence. The base of the fenceposts are arranged in the (x, y)-plane as the quarter circle $x^2 + y^2 = 25$ for $x, y \ge 0$, and the height of the fencepost at point (x, y) is given by h(x, y) = 10 - x - y. In this problem, you will use a scalar line integral to find the area of one side of the fence.

a. Parameterize the quarter circle by a path $\mathbf{x}(t)$. Be sure to include the limits for the parameter t.

b. Compute the velocity $\mathbf{x}'(t)$ and speed $\|\mathbf{x}'\|$ for your parameterization

 \mathbf{c} . Write down a scalar line integral of h over the path, and evaluate that integral.

4. [16] On scalar surface integrals. Recall that the integral of a scalar field f over a surface parameterized by \mathbf{X} is

$$\iint_{\mathbf{X}} f \, dS = \iint_{D} f(\mathbf{X}(s,t)) \| \mathbf{N}(s,t) \| \, ds \, dt$$

Evaluate the scalar surface integral $\iint_{\mathbf{X}} z^3 dS$ where **X** is the parameterization of the unit hemisphere

$$\mathbf{X}(s,t) = (\cos s \sin t, \sin s \sin t, \cos t), \text{ for } 0 \le s \le 2\pi, 0 \le t \le \pi/2.$$

You may use the fact that the length of the normal vector $\mathbf{N}(s,t)$ is equal to $\sin t$. Carry out your evaluatation until you get an ordinary double integral in terms of s and t. You don't have to evaluate that integral.

5. [20; 5 points each part] On Gauss's theorem. Recall that Gauss's theorem, also known as the divergence theorem, says that the integral of \mathbf{F} over ∂D equals the divergence of \mathbf{F} over the region D.

$$\iint_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \iiint_{D} \nabla \cdot \mathbf{F} \, dV$$

Let D be the segment of a paraboloid $D = \{(x, y, z) \in \mathbf{R}^3 \mid 0 \le z \le 9 - x^2 - y^2\}$ and let \mathbf{F} be the radial vector field given by $\mathbf{F}(x, y, z) = (x, y, z)$.

a. Write down the triple integral $\iiint_D \nabla \cdot \mathbf{F} \, dV$ in terms of x, y, and z with limits of integration for each. Don't evaluate the integral.

b. The boundary ∂D comes in two parts— S_1 , the upper parabolic surface, and S_2 , the lower surface which is a circle of radius 3 in the x, y-plane. Parameterize the surface S_1 .

 ${f c.}$ Compute the normal vector ${f N}$ for the parameterization you chose in part ${f b.}$ You'll use ${f N}$ in part ${f d.}$

d. Recall that the vector surface integral of a vector field ${\bf F}$ on a surface parameterized by ${\bf X}$ is

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{X}(s,t)) \cdot \mathbf{N}(s,t) \, ds \, dt.$$

Write down the surface integral $\iint_{S_1} \mathbf{F} \cdot d\mathbf{S}$ for the upper parabolic surface in terms of the two variables you used in your parameterization of S_1 with limits of integration for those two variables. No other variables should appear in your final integral. Don't evaluate the integral.

6. [16] On change of variables and the Jacobian.

Parabolic coordinates. The relevant equations to convert between rectangular coordinates (x, y) and parabolic coordinates (u, v) are

$$x = uv$$
 $u = \sqrt{\sqrt{x^2 + y^2} + y}$ $y = \frac{1}{2}(u^2 - v^2)$ $v = \sqrt{\sqrt{x^2 + y^2} - y}$

A double integral can be converted from rectangular coordinates to parabolic coordinates using a Jacobian. The area differential $dA = dx \, dy$ is equal to $\left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$.

Determine the Jacobian

$$\left|\frac{\partial(x,y)}{\partial(u,v)}\right| =$$

#1.[16]	
#2.[16]	
#3.[18]	
#4.[16]	
#5.[20]	
#6.[16]	
Total	