Math 131 Multivariate Calculus
Final Answers
May 2010

Scale. ...

1. [16; 8 points each part] On conservative vector fields. We proved that a conservative vector field \(\mathbf{F} \) on a simply connected region is the gradient of some scalar field \(f \).

a. Verify that the vector field \(\mathbf{F} \) given by \(\mathbf{F}(x, y, z) = (2x + y, x + \cos z, -y \sin z) \) has curl 0.

\[
\text{curl} \ \mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \times (F_1, F_2, F_3)
\]

\[
= \left| \begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_1 & F_2 & F_3
\end{array} \right|
\]

\[
= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right)
\]

\[
= (-\sin z + \sin z, 0 - 0, 1 - 1) = (0, 0, 0)
\]

b. Find a scalar potential field \(f \) on \(\mathbb{R}^3 \) whose gradient is \(\mathbf{F} \).

Since \(\frac{\partial f}{\partial x} = 2x + y \), therefore \(f(x, y, z) = x^2 + xy + C(y, z) \) where \(C(y, z) \) can depend on \(y \) and \(z \) but not on \(x \). Take \(\frac{\partial}{\partial y} \) to see that we need \(x + \frac{\partial}{\partial y} C(y, z) = x + \cos z \). Therefore, \(C(y, z) = y \cos z + \text{some function of } z \). The function

\[
f(x, y, z) = x^2 + xy + y \cos z
\]

will do since its derivative with respect to \(z \) is \(-y \sin z\) as required.

2. [16] On Green’s theorem. Recall that Green’s theorem equates a path integral over the boundary of a two-dimensional region \(D \) to a double integral over \(D \).

\[
\oint_{\partial D} M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy.
\]

Let \(\mathbf{F} \) be the vector field defined on \(\mathbb{R}^2 \) by \(\mathbf{F}(x, y) = (y^2, x^2) \). Let \(C \) be the path formed by the square with vertices \((0, 0), (1, 0), (1, 1), \) and \((0, 1)\), oriented counterclockwise. Use Green’s theorem to convert the vector line integral

\[
\int_C \mathbf{F} \cdot ds
\]

into a double integral. Your double integral should have only the variables \(x \) and \(y \), and it should have limits of integration for both \(x \) and \(y \). Don’t evaluate the resulting double integral.

The closed curve \(C \) is the boundary \(\partial D \) of the unit square \(D \), so by Green’s theorem, the vector line integral is equal to

\[
\int_D \left(\frac{\partial}{\partial x} x^2 - \frac{\partial}{\partial y} y^2 \right) \, dx \, dy = \int_0^1 \int_0^1 (2x - 2y) \, dx \, dy.
\]

3. [18; 6 points each part] On scalar line integrals. Recall that the scalar line integral of a scalar field \(f \) on a path parameterized by \(x \) is

\[
\int_a^b f(x(t)) \|x'(t)\| \, dt.
\]

Tom Sawyer is whitewashing a picket fence. The base of the fenceposts are arranged in the \((x, y)\)-plane as the quarter circle \(x^2 + y^2 = 25 \) for \(x, y \geq 0 \), and the height of the fencepost at point \((x, y)\) is given by \(h(x, y) = 10 - x - y \). In this problem, you will use a scalar line integral to find the area of one side of the fence.

a. Parameterize the quarter circle by a path \(x(t) \). Be sure to include the limits for the parameter \(t \).

\[
x(t) = (5 \cos t, 5 \sin t) \quad 0 \leq t < \pi/2.
\]

b. Compute the velocity \(x'(t) \) and speed \(\|x'(t)\| \) for your parameterization.

For this path, the velocity is \(x'(t) = (-5 \sin t, 5 \cos t) \), so the speed is \(\|x'(t)\| = 5 \).

c. Write down a scalar line integral of \(h \) over the path, and evaluate that integral.

\[
\int_x (10 - x - y) \, ds = \int_0^{\pi/2} (10 - x) \|x'(t)\| \, dt
\]

\[
= 5 \int_0^{\pi/2} (10 - 5 \cos t - 5 \sin t) \, dt
\]

\[
= 25(\pi - 2)
\]

4. [16] On scalar surface integrals. Recall that the integral of a scalar field \(f \) over a surface parameterized by \(\mathbf{X} \) is

\[
\iint_X f \, dS = \iint_D f(\mathbf{X}(s, t)) \|\mathbf{N}(s, t)\| \, ds \, dt.
\]

Evaluate the scalar surface integral \(\iint_X z^3 \, dS \) where \(\mathbf{X} \) is the parameterization of the unit hemisphere \(\mathbf{X}(s, t) = (\cos s \sin t, \sin s \sin t, \cos t) \) for \(0 \leq s \leq 2\pi \) and \(0 \leq t \leq \pi/2 \). You may use the fact that the length of the normal vector \(\mathbf{N}(s, t) \) is equal to \(\sin t \). Carry out your evaluation until you get an ordinary double integral in terms of \(s \) and \(t \). You don’t have to evaluate that integral.

\[
\iint_X z^3 \, dS = \iint_D \cos^3 t \sin t \, ds \, dt
\]

\[
= \int_0^{\pi/2} \int_0^{2\pi} \cos^3 t \sin t \, ds \, dt
\]
5. [20; 5 points each part] On Gauss’s theorem. Recall that Gauss’s theorem, also known as the divergence theorem, says that the integral of \mathbf{F} over ∂D equals the divergence of \mathbf{F} over the region D.

$$\int_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \int \int_D \nabla \cdot \mathbf{F} \, dV$$

Let D be the segment of a paraboloid $D = \{(x, y, z) \in \mathbb{R}^3 | 0 \leq z \leq 9 - x^2 - y^2\}$ and let \mathbf{F} be the radial vector field given by $\mathbf{F}(x, y, z) = (x, y, z)$.

a. Write down the triple integral $\int \int \int_D \nabla \cdot \mathbf{F} \, dV$ in terms of the two variables you used in your parameterization of S_1 with limits of integration for those two variables. No other variables should appear in your final integral. Don’t evaluate the integral.

$$\int \int \int_{S_1} \mathbf{F} \cdot \mathbf{N} \, ds \, dt$$

$$= \int_{-3}^{3} \int_{-\sqrt{9-s^2}}^{\sqrt{9-s^2}} \int_{0}^{9-x^2-y^2} 3 \, dz \, dy \, dx$$

b. The boundary ∂D comes in two parts—S_1, the upper parabolic surface, and S_2, the lower surface which is a circle of radius 3 in the x, y-plane. Parameterize the surface S_1.

There are various ways to do that. Here’s one. Take x and y to be the parameters. You could leave them as x and y, but I’ll write them as s and t for clarity. Then $x = s, y = t$ and $z = 9 - s^2 - t^2$, where $-3 \leq s \leq 3$ and $-\sqrt{9-s^2} \leq t \leq \sqrt{9-s^2}$.

c. Compute the normal vector \mathbf{N} for the parameterization you chose in part b. You’ll use \mathbf{N} in part d.

There are various ways to compute \mathbf{N}. You could use the formula $\mathbf{N} = (-f_x, -f_y, 1)$ that we developed in class for the normal for the graph of a function $z = f(x, y) = f(s, t)$.

Here’s a way to compute \mathbf{N} that uses Jacobians. It leads to the formula mentioned above.

$$\mathbf{N}(s, t) = \left(\frac{\partial (y, z)}{\partial (s, t)}, \frac{\partial (x, z)}{\partial (s, t)}, \frac{\partial (x, y)}{\partial (s, t)} \right)$$

$$= \left(\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} - \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} - \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} - \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \right)$$

$$= \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial t}, 1 \right)$$

$$= (2x, 2y, 1)$$

d. Recall that the vector surface integral of a vector field \mathbf{F} on a surface parameterized by \mathbf{X} is

$$\int \int_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \int \int_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) \, ds \, dt.$$