Math 131 Multivariate Calculus
Second Test
April 2014

You may refer to one sheet of notes on this test. You may leave your answers as expressions such as $e^{2\sqrt{\frac{\sin^2(\pi/6)}{1+\ln 10}}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

Problem 1. [30; 6 points each part] Calculate the velocity, speed, acceleration, and unit tangent vector of the path $\mathbf{x}(t) = (\cos t, \sin t, e^t)$.

a. Velocity.

b. Speed.

c. Acceleration.

d. Unit tangent vector.

e. Set up an integral that gives the length of that path for $1 \leq t \leq 5$. Do not evaluate the integral.
Problem 2. [15] The vector field \(\mathbf{F}(x, y, z) = (y, x, -3) \) is the gradient field \(\nabla f \) of some potential field \(f \). Find a potential function \(f : \mathbb{R}^3 \to \mathbb{R} \) for \(\mathbf{F} \).

Problem 3. [15] Set up a double integral to compute the volume of a solid whose base is the plane region \(D \) in the \((x, y)\)-plane bounded by the \(x \)-axis and the parabola \(y = 4 - x^2 \); and whose height at a point \((x, y)\) in that region is given by \(f(x, y) = \sin(x^2 + y^2) \). Be sure to sketch the region \(D \). Do not evaluate the integral.
Problem 4. [20] Consider the function \(f(x, y) = e^{-y}(x^2 - y^2) \). Its first and second partial derivatives are
\[
\begin{align*}
 f_x &= 2xe^{-y} \quad f_y = -e^{-y}(x^2 + 2y - y^2) \\
 f_{xx} &= 2e^{-y} \quad f_{xy} = -2xe^{-y} \quad f_{yy} = e^{-y}(x^2 + 4y - y^2 - 2)
\end{align*}
\]

a. Determine the two critical points of \(f \).

b. Identify the nature (max, min, saddle) of each critical point.

Parabolic coordinates. The relevant equations to convert between rectangular coordinates (x, y) and parabolic coordinates (u, v) are

\[
\begin{align*}
 x &= uv \\
 y &= \frac{1}{2}(u^2 - v^2)
\end{align*}
\]

A double integral can be converted from rectangular coordinates to parabolic coordinates using a Jacobian. The area differential $dA = dx\, dy$ is equal to \(\left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du\, dv \).

Determine the Jacobian

\[
\left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \]

\[
\begin{array}{|c|c|c|}
\hline
#1 & [30] \\
#2 & [15] \\
#3 & [15] \\
#4 & [20] \\
#5 & [20] \\
\hline
\text{Total} & & \\
\hline
\end{array}
\]