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Remark on notation. Throughout this discus-
sion we’ll be considering a moving point, that is,
a path x : [a, b] → Rn. We’ll take t to be the in-
dependent variable, which we’ll call time, and we’ll
use the prime notation to always mean the deriva-

tive with respect to t, so, for instance, x′ =
dx

dt
.

Whenever we need the derivative with respect to
another variable, such as s, we’ll stick to Leibniz’

notation
d

ds
.

Arclength. Consider a path x : [a, b]→ Rn. We
want to define the length L of this path, also called
its arclength. It will be defined as the integral of
its speed. In order for the speed ‖x′(t)‖ to have an
integral, we’ll assume that x is C1 (which means it
is differentiable and its derivative is continuous).

An argument by analogy for this definition is as
follows. In the one-dimensional case, the derivative
of position x(t) is velocity v(t) = x′(t), and, by
the fundamental theorem of calculus, the integral∫ b

a

v(t) dt of velocity is the difference in position,∫ b

a

v(t) dt = x(b)− x(a).

When the velocity is positive, the integral is the
distance travelled over the time interval [a, b], that
is, the length of the path along the x-axis. But
when the velocity is negative, the integral gives the
negation of the distance travelled. By replacing ve-
locity by its absolute value, that is by speed |x′(t)|,
we get the total distance travelled. Furthermore,
this integral of speed,∫ b

a

|x′(t)| dt

always works to give the total distance L travelled
along the x-axis even when the object alternates
the direction it moves along the x-axis.

By analogy, you would guess that even when the
direction of travel is not restricted to the x-axis,
the distance L travelled along the curve should still
be the integral of the speed, and that works out to
be right.

A better argument than by analogy uses infinites-
imals. Imagine the time interval [a, b] to be divided
into infinitesimally short intervals [t, t+dt]. The dt
is called the differential of time t. During this in-
finitesimally short interval, the object moves from
position x(t) to x(t + dt). Let’s assume we’re in
dimension 2, so that x(t) = (x(t), y(t)). Then the
x-coodinate changes from x(t) to x(t+dt), a differ-
ence we can denote dx = x(t+dt)−x(t), called the
differential of x. Likewise, in the y-coordinate, we
get dy = y(t+ dt)− y(t). Those are two sides of an
infinitely small right triangle with legs dx and dy,
called Leibniz’ differential triangle.
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�
�
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�
�
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ds
dy

(x(t),y(t))

(x(t+dt),y(t+dt))

Let ds denote the hypotenuse of this infinitesimal
triangle, so that

ds2 = dx2 + dy2

and

ds =
√
dx2 + dy2

Now, during the interval [t, t + dt] the object
moves a distance ds. If we sum all these infinitesi-
mal distances, we should get the total distance trav-
elled, that is, the length of the path is the integral

L =

∫ b

a

ds =

∫ b

a

ds

dt
dt
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We can find other expressions for
ds

dt
as follows.

ds

dt
=

√
dx

dt

2

+
dy

dt

2

=
√

(x′)2 + (y′)2 = ‖x′‖.

Thus, the length of the path is the integral of the
speed

L =

∫ b

a

‖x′(t)‖ dt

This formula works in all dimensions, not just
n = 2.

This argument by infinitesimals is the kind that
Leibniz used since he based his calculus on differen-
tials, but arguments by infinitesimals can be trans-
lated into arguments by limits and Riemann inte-
grals to yield the results more rigorously.

Note that the resulting integral is usually difficult
to evaluate because the integrand involves a square
root of a sum. When the curve is a straight line
or a circle, it’s easy. Lengths of arcs of a parabola
can be computed, too. But even a curve as simple
as an ellipse gives a nonelementary integral, that
is, an integral that can’t be evaluated in terms of
the usual elementary functions that include alge-
braic functions, trig functions, exponential func-
tions, and their inverses. To find arclengths for
ellipses, special functions had to be created.

Example 1 (The length of a helix.). A cylindrical
helix is the curve you get when you wind a string
around a cylinder so that each winding is a little
higher on the cylinder. It’s equation is

x(t) = (a cos t, a sin t, bt)

where a is the radius of the cylinder and 2πb is how
much higher on the cylinder the next winding is.
Its velocity is

x′(t) = (−a sin t, a cos t, b),

so its speed is

‖x′(t)‖ =
√
a2 sin2 t+ a2 cos2 t+ b2 =

√
a2 + b2.

Figure 1: Helix

Since the speed is constantly
√
a2 + b2, then, of

course, the length L of this helix over the time in-
terval [0, t] is L = t

√
a2 + b2, but we could evaluate

that by an integral, too:

L =

∫ t

0

‖x′(τ)‖ dτ

=

∫ t

0

√
a2 + b2 dτ

=
√
a2 + b2 τ

∣∣∣t
τ=0

= t
√
a2 + b2

(Since the variable t is used as a limit of integration,
some other variable is needed in the integral. Any
variable, like τ will do.)

The arclength parameter. So if dt is the dif-
ferential for t, and dx is the differential for x, then
what is ds the differential for? It will be for s, but
we have to figure out what s means.

Let x be a C1 path in Rn over the time interval
[a, b], and assume that x′(t) is never 0. Let s(t)
denote the length of the path over the interval [a, t]:

s(t) =

∫ t

a

‖x′‖ =

∫ t

a

‖x′(τ)‖ dτ.
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By the fundamental theorem of calculus, if we
now differentiate the last integral, we get

ds

dt
= s′ = ‖x′(t)‖,

which says that the derivative of the arclength s is
the speed. In other words, ds is the differential of
the arclength s.

That makes sense when you reconsider why we
defined ds in the first place, that is, when it ap-
peared in Leibniz’ differential triangle. There, ds
was an infinitesimal piece of the curve.

Parameterizing a curve by its arclength.
Sometimes we have a curve in Rn and we’re looking
for a parameterization of it. There are, of course,
many parameterizations of a curve since a path x
may travel down the curve at any rate and still tra-
verse the curve. But we would like to have a stan-
dard parameterization for the curve, and a natural
candidate for that is the path x that traverses the
curve at unit speed. That would be a path x whose
speed is 1, that is, ‖x′(t)‖ = 1. You can create such
a path from any path x (so long as x is C1 and it’s
derivative is never 0) by reparamatrizing it, that is,
by making s the independent variable instead of t.
Note that

x′(s) =
dx

ds
=
dx

dt

dt

ds
= x′(t)

1

ds/dt
=

x′(t)

‖x′(t)‖
In practice, reparametrizing x in terms of s is

difficult, but not always.

Example 2 (The helix again). Continue the helix
example started above. For that, the arclength was
easy to find, and we found length of the helix over
the time interval [0, t] was

s = s(t) = t
√
a2 + b2.

We can easily solve for t in terms of s to get

t =
s√

a2 + b2
.

Now that we know t in terms of s, we can easily
reparametrize the curve x in terms of s, just by
substituting. Since

x(t) = (a cos t, a sin t, bt),

therefore, x(s), by which we mean x(t(s)), is

x(s) =

(
a cos

s√
a2 + b2

, a sin
s√

a2 + b2
,

bs√
a2 + b2

)
.
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