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Volumes as integrals. Recall from calculus of
one variable that we had a general principle to find
the volume that’s bounded between planes x = a
and x = b. The volume V of that region is given
by the integral

V =

∫ b

a

A(x) dx

where A(x) is the area of the cross section at x. For
instance, the disk and washer methods find the vol-
umes of solids of revolution where the cross sections
are circles and annuli.

We’ll start with that principle as a basis for dou-
ble integrals.

Figure 1: Integration over a rectangle

Integrating over rectangles. Now suppose
each cross section of the region is not only bounded
between the planes x = a and x = b, but also

bounded between the planes y = c and y = d. That
is to say, the region is entirely over (or under) the
rectangle R = [a, b]×[c, d] in the (x, y)-plane. Then
the area of the cross section at x is also given by
an integral, namely,

A(x) =

∫ d

y=c

C(x, y) dy

where C(x, y) is the length of the is the length of
the cross sectional line at (x, y), that is, the length
of the line above the point (x, y) inside the volume.
Thus, the volume of the region is an integral of an
integral:

V =

∫ b

x=a

(∫ d

y=c

C(x, y) dy

)
dx.

Usually the parentheses are left out and the vari-
ables aren’t mentioned in the limits of integation

V =

∫ b

a

∫ d

c

C(x, y) dy dx.

When that’s done, the last differential dx indicates
that the first integral has limits in terms of the as-
sociated variable, that is, a ≤ x ≤ b, while the next
to the last differential dy indicates that the next
integral has limits in terms of the next associated
variable, c ≤ y ≤ d.

Typically, we’re interested in the area under the
surface z = f(x, y) and above the (x, y)-plane, so
the cross sectional length C(x, y) equals f(x, y).

We can also find the volume V by first intersect-
ing the region by planes with a fixed y value rather
than a fixed x value, then second by planes with
a fixed x value rather than a fixed y value. You
get the same volume, but with a different double
integral

V =

∫ d

y=c

∫ b

x=a

C(x, y) dx dy.

This exchange of the order of integration is called
Fubini’s theorem. It works so long as (1) you inte-
grate over a rectangle R = [a, b]× [c, d], and (2) the
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length of the cross section C(x, y) is a continuous
function of x and y. There are lots of other weaker
conditions than continuity that can replace (2), but
most of the functions we consider are continuous,
so that condition will do for us.

Formal definition and properties of double
integrals. Integrals over a rectangle R∫∫

R

f(x, y) dx dy

can be defined formally in terms of Riemann sums
as was done for single integrals and the analogous
results follow. In this definition f doesn’t have to
have positive values but can also have negative val-
ues. Of course, if f has only negative values, then
the integral is negative, too.

The usual properties that hold for single inte-
grals, such as linearity, monotonicity, etc., also hold
for double integrals.

Integrals over regions other than rectangles.
Some times we need integrals of functions defined
over regions other than rectangles. By extending
these functions be defining them to be 0 outside
their original domain, the domains can be extended
to rectangles, and then the previous double inte-
grals work.

But, in practice, there are easier ways. The text
describes a couple of these nonrectangular domains
D. For the first type, the domain D ⊆ R2 is
bounded on the left by the line x = a, on the right
by the line x = b, below by the function y = γ(x),
and above by the function y = δ(x). In that case,
you can find the double integral as an iterated in-
tegral ∫∫

D

f =

∫ b

x=a

∫ δ(x)

y=γ(x)

f(x, y) dy dx.

We’ll look at an example in class.

Another type of region is bounded above and be-
low by straight lines but to the left and right by

curves, and for that type of region, a similar dou-
ble integral works where the order of x and y are
reversed.

For regions that aren’t of either of these types,
you can break the region into subregions of those
two types and add their integrals together.

Incidentally, you can find the area of a region
D ⊆ R2 by a double integral of the constant func-
tion 1:

Area(D) =

∫∫
D

1 dx dy.
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