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Extrema. We’ll discuss maxima and minima of
scalar fields f : Rn → R. They occur at critical
points, that is, where the first partial derivatives
are all 0. To determine which critical points are
maxima, which are minima, and which are some-
thing else, we’ll look at the Hessian as the basis of
a second derivative test. We’ll briefly survey com-
pact sets and the Extreme Value Theorem (EVT).

Comparison to the single variable case. In
the one-dimensional case, we singled out values of
a such that f ′(a) = 0 and called such values critical
points of f . That’s because if f has a max or a
min at a, then there has to be a horizontal tangent
line at (a, f(a)) on the graph of f (assuming, of
course, that f is differentiable and a occurs inside
the domain of f). Recall that not every critical
point of f was a max or a min; for instance, x = 0
is the critical point of f(x) = x3, but f has neither
a max nor a min at x = 0.

The analogous thing happens in the multidimen-
sional case. If f has a max or min at a, then
there has to be a horizontal tangent hyperplane at
(a, f(a) on the graph of f , and there’s a horizon-
tal tangent hyperplane if and only if the derivative
Df(a) = 0. Equivalently, all the partial derivatives
of f at a are 0. And, like in the one-dimensional
case, not every critical points will be a max or a
min.

In the one-dimensional case, we had a second-
derivative test to help us determine whether a crit-
ical point was a max or a min. It said:

for a critical point a of f , if f ′′(a) > 0,
then f has a min at x = a, but if f ′′(a) <
0, then f has a max at x = a.

If the second derivative f ′′(a) was 0, then you had
to try some other way to determine whether it
was a max or min or neither. We need some sort
of second-derivative test for the multidimensional
case.

Saddle points. The multidimensional case is
complicated by a phenomenon that doesn’t occur in
the one-dimensional case, and that’s saddle points.
Consider the function f(x, y) = x2 − y2.

This function f has a critical point at (0, 0) since
∂f
∂x

(0, 0) = 0 and ∂f
∂y

(0, 0) = 0. But it’s clearly not a

max since the intersection of the surface z = x2−y2
with the plane y = 0 gives the parabola z = x2

which opens upward, and it’s clearly not a min since
the intersection of the surface z = x2− y2 with the
plane x = 0 gives the parabola z = −y2 which
opens downward. The surface looks like a saddle.
The main problem in the multivariable case is to
classify critical points as as maxima, minima, or
saddle points.
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The second derivative test, the Hessian cri-
terion. Suppose a is a critical point of f . We can
approximate the function f by the second Taylor
polynomial p2 at x = a.

p2(x) = f(a) + Df(a)h + 1
2
hT Hf(a)h

where H is the Hessian, and h = x− a. Of course,
p2 also has a critical point at a since it has the
same horizontal tangent hyperplane there that f
has. In other words, the linear term Df(x) of p2 is
0. Furthermore, if p2 has a min at a, then so does
f ; or if p2 has a max at a, then so does f ; or if
p2 has a saddle point at a, then so does f . That
means we need to examine the quadratic term of p2
more carefully to see what’s going on with f .

The quadratic term, which is also called a
quadratic form, Q(h) = hT Hf(a)h, is

[
h1 · · · hn

] fx1x1 · · · fx1xn

...
...

. . .
...

fxnx1 · · · fxnxn


h1

...
hn


Note that the second partial derivatives fxixj

and
fxjxi

are equal. (We’ll assume they’re continuous
which implies that.) That means the matrix H is
a symmetric matrix, that is, HT = H.

Now, Q(h) has a minimum at h = 0 if and only
if Q(h) > 0 for all h 6= 0. When that happens, we
say the quadratic form Q is positive definite. And,
in that case, p2 has a minimum at x = a, and that
implies f has a minimum at x = a.

Likewise, Q(h) has a maximum at h = 0 if and
only if Q(h) < 0 for all h 6= 0. When that happens,
we say the quadratic form Q is negative definite.
And, in that case, p2 has a maximum at x = a,
and that implies f has a maximum at x = a.

But, when Q(h) takes on both negative and pos-
itive values, there’s a saddle point at h = 0. And,
in that case, f , too, has a saddle point at x = a.

We can summarize this as a theorem.

Theorem 1. If f : Rn → R is of class C2 and has
a critical point at a, then

(1) if the Hessian Hf(a) is positive definite, then
f has a local min at a,

(2) if Hf(a) is negative definite, then f has a
local max at a, and

(3) if the determinant |Hf(a)| is nonzero, but
Hf(a) is neither positive definite nor negatve defi-
nite, then f has a saddle point at a.

We still need to be able to distinguish these three
cases to get a good second-derivative test. There’s
a special bit of linear algebra that applies here. It
uses the fact that the Hessian is a symmetric ma-
trix. The second derivative test involves the se-
quence of principal minors d1, d2, . . . , dn of the Hes-
sian Hf(a). The ith principal minor di is defined
as the determinant of the upper left i × i subma-
trix of Hf(a), so the nth principle minor dn is the
determinant of the entire Hessian, dn = |Hf(a)|.

So, here’s the test.

Theorem 2 (Second derivative test for local ex-
trema). Calculate the sequence of principal minors
d1, d2, . . . , dn of the Hessian Hf(a). If dn is not 0,
then

(1) If all n principal minors d1, d2, . . . , dn are pos-
itive, then f has a local minimum at a;

(2) If all the odd principal minors d1, d3, . . .
are negative while all the even principal minors
d2, d4, . . . are positive, then f has a local maximum
at a;

(3) In all other cases, f has a saddle point at a.

We’ll look at a couple of examples in class.
Special cases occur when the determinant, dn =
|Hf(a)| is 0. That can occur, for instance, when
f is constant on a line through a. For example,
f(x, y) = x2 takes its minimum on the whole line
x = 0.

Global extrema on compact regions. Recall
from calculus of one variable that the extreme val-
ues of a function f defined on a closed interval [a, b]
could occur not only at the critical points in the in-
terior (a, b), but also at the endpoints x = a or
x = b. The extreme value theorem, Evt, said that
any continuous function f defined on a closed in-
terval takes on a maximum value and a minimum
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value. Is there anything like that for functions of
several variables?

Yes, there is an Evt for several variables, but
the statement of it is more complicated because the
subsets of Rn that correspond to closed intervals in
R are more complicated to describe. We need to
look at the topological concepts of ‘open subset,’
‘closed subset,’ and ‘compact subset’ of Rn. These
were mentioned back in section 2.2.

Some topology. We’ll look at some examples to
illustrate the following concepts.

First, we define ‘open’ and ‘closed’ balls in Rn.
These directly correspond to open and closed inter-
vals in R. The closed ball of radius r centered at
the point a ∈ Rn is the set

{x ∈ Rn | ‖x− a‖ ≤ r},

in other words, it includes the interior and the
boundary of the sphere of radius r. The open ball
of radius r centered at the point a ∈ Rn is the set

{x ∈ Rn | ‖x− a‖ < r},

in other words, it includes the interior of the sphere
of radius r but not the boundary.

Next, we define open and closed subsets of Rn

in general. A subset S ⊆ Rn is said to be open if
every point a ∈ S is the center of some open ball
that is entirely contained in S, that is, there is some
positive number r such that

‖x− a‖ < r implies x ∈ S.

A neighborhood of a point x is any open set that
contains x. A point x ∈ Rn is said to be in the
boundary of a set S ⊆ Rn if every open ball centered
at x intersects S (i.e., the intersection is nonempty)
and also intersects the complement of S. In other
words, for each positive number r there is one point
in S within r of x and another point not in S within
r of x. A subset S ⊆ Rn is said to be closed if it
contains all of its boundary points. It can be proved
that the complement of an open set is closed, and
vice versa.

Compact subsets of Rn aren’t introduced until
section 4.2. A subset S ⊆ Rn is said to be compact
if it is both closed and bounded.

The Extreme Value Theorem, Evt, for Rn.
A proof of this theorem is beyond the scope of this
course.

Theorem 3 (Evt). If f is a continuous real-valued
function defined on a compact subset X ⊆ Rn, then
f takes on a maximum and a minimum value. That
is, there are points amin and amax in X such that
for all x ∈ X,

f(amin) ≤ f(x) ≤ f(amax).

When we apply this theorem to a differentiable
function f , it means we will find the extrema if we
check (1) the critical points on the interior of the
domain, and (2) all the points on the boundary.
Note that a nondifferentiable function can also have
extrema (3) where the function is not differentiable.
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