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The subject matter of this course concerns func-
tions f : Rn → Rm, but first we’ll look at some
standard concepts that apply to any function f :
X → Y from one set X to another set Y .

Domains and codomains. You’re familiar with
the concept of function from calculus and from lin-
ear algebra.

In calculus of one variable, the domain X of a
function f : X → Y was a subset of the real num-
bers R, typically an interval, and the codomain Y
was R.

In linear algebra, the domain of a linear transfor-
mation T : V → W was one vector space V , and
the codomain W was another vector space. We also
used the term linear operator when V and W were
the same vector space.

In this course we’ll look at functions f : Rn →
Rm whose domain is a subset of n-space, Rn and
whose codomain is m-space, Rm. Three special
cases of particular interest are

• Scalar fields in n-space. These are functions
f : Rn → R when m = 1.

• Paths in m-space. These are functions f : R→
Rm when n = 1.

• Vector fields in n-space. These are functions
f : Rn → Rn when m = n.

When the codomain Rm is just the real numbers
R, that is, R1, we say f is scalar-valued. But when
m > 1, we say f is vector-valued, and in that case
we use boldface for the name of the function, f , just
as we use boldface for vectors.

Onto functions (surjective), one-to-one func-
tions (injective), one-to-one correspondences
(bijective), range. These terms mean the same
thing in multivariate calculus as they in calculus of
a single variable. Be sure you’re familiar with the
following concepts for a function f : X → Y .

The function f is said to be onto or surjective if
every element of Y is the image f(x) of at least one
element x ∈ X, that is,

∀y ∈ Y, ∃x ∈ X, f(x) = y.

The function f is said to be one-to-one or injec-
tive if no two distinct elements of X have the same
image under f , that is, f(x1) = f(x2) only when
x1 = x2. That can be stated as

∀y ∈ Y, ∃ at most one x ∈ X, f(x) = y.

Those functions that are both one-to-one and
onto are called one-to-one correspondences or bi-
jective functions.

∀y ∈ Y, ∃ exactly one x ∈ X, f(x) = y.

The quantifier indicating that there is exactly one
x satisfying a condition is usually written ∃!x.

The function f : X → Y is bijective if and only
if there is an inverse function f−1 : Y → X, a
function such that

∀x ∈ X, ∀y ∈ Y, y = f(x) iff x = f−1(y).

Note that there can be at most one inverse function.
An equivalent condition for f−1 to be inverse to
f is that the two compositions are both identity
functions, that is, f−1 ◦ f is the identity function
on X, and f ◦ f−1 is the identity function on Y .

The image of a function f : X → Y is the subset
of Y consisting of all the elements of the form f(x)
for some x ∈ X. The image of a function f is often
denoted f(X). Note that f is onto exactly when
the range is all of Y .

Note: the term range is used ambiguously in
mathematics. Some people use range to mean the
codomain Y of a function f : X → Y , but oth-
ers use it to mean the image f(X). We’ll use the
terms codomain and image since those terms are
unambiguous.
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Overloading symbols for variables and func-
tions. We’ll be working with several functions at
the same time, each with many coordinates. Al-
though it would be nice to have a different symbol
for each function and variable, it becomes hard to
keep track of so many symbols.

In calculus of one variable, when x was a func-
tion of t, we used another symbol, f to describe
that function, and we used the functional notation
x = f(t). An alternative would be to use the same
symbol x for both the variable x and the function
f . We would then write x = x(t). You could read
that equation as saying that x is a variable that,
parenthetically, depends on t.

Overloading the same symbol x with two mean-
ings like that can cause confusion, but it also aids
in understanding since we won’t have to remem-
ber that the symbol x is related to the symbol f
somehow.

(I’ve often said that there there are two principles
that lead to mathematical insight: confusion and
forgetfulness. I get more insightful every day. lol)

Curves and paths. We discussed curves and
paths before. A path is a function x : Rn → Rm

where n = 1. Typically the single independent vari-
able is taken to be t. It’s the variable that param-
eterizes the path. x(t) is the location in Rm of the
point at time t.

We’ll distinguish between a path and the curve
it travels. The curve is the image of this path, that
is, a subset of Rm.

Scalar fields. A scalar-valued function f : Rn →
R is also called a scalar field on Rn.

Lets start by considering the case when n = 2.
We’ll be able to visualize that case. There are three
different ways to do that, either with a graph of the
function, as a field of scalars, and as level curves.

The graph of a function f : R2 → R is just a
surface in 3-space whose equation is z = f(x, y).
It’s harder to draw these surfaces, but there are
plenty of computer programs that help us with such
surfaces.

Example 1. Figure 1 shows a computer-generated
image for the graph z = x ln(y2 + 1). Note that
z = 0 when either x = 0 or y = 0, so the y-axis and
the x-axis are both within this surface. In fact, the
union of those two axes form the contour at level 0.
The contour curve of f at height c is the intersection
of the plane z = c at height c above the xy-plane
with the graph z = f(x, y) of the function.

Figure 1: The graph z = x ln(y2 + 1)

The surface has some other contour curves drawn
on it. Notice that ln(y2+1) is always greater than or
equal to 0, so the part of the graph z = x ln(y2 + 1)
where x is positive lies above the xy-plane, and the
part where x is negative lies below it.

Another way to visualize a function f : R2 →
R is to use level curves as shown in figure 2. A
level curve is just a contour curve projected down
to the xy-plane, in other words, the graph of the
equation c = f(x, y) in the xy-plane. (Warning:
what is called here a level curve is commonly called
a contour curve elsewhere.)
Here you see some level curves for the same function
f(x, y) = x ln(y2 + 1).

The colors also indicate the value of the func-
tion as they did in the previous image. Green for
near 0, yellow and red for positive values, and blue
and violet for negative values. Rather than using
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Figure 2: Level curves for x ln(y2 + 1)

colors, you could actually place numbers indicat-
ing the values at selected points. In other words,
scalar field on the plane associates at each point a
numerical value.

You should be familiar with a few standard sur-
faces that frequently come up such as quadric sur-
faces. They’re the surfaces described by quadratic
equations
Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx

+Gx + Hy + Ij + K = 0.
where the capital letters are constants, and at

least one of the first six of them is not zero. You
can see them and other surfaces at The Gallery of
Surfaces.

Scalar fields in R3 can be imagined if you asso-
ciate at each point a numerical value. They can’t
be drawn very well, however, and neither can their
graphs.

Vector fields. A vector field on Rn is a vector-
valued function f : Rn → Rn where the domain
and the codomain have the same dimension n. The
general theory applies to the more general vector-
valued functions f : Rn → Rm where the dimen-
sions of the domain and codomain don’t have to be
the same.

Figure 3: Vector field (x + y, x− y)

A vector-valued function f : Rn → Rm is usu-
ally described using its m scalar-valued component
functions f1, f2, . . . , fm by

f(x) = (f1(x), f1(x), . . . , fm(x)).

Note that each scalar-valued component function
fi : Rn → R takes as an argument an n-vector and
returns a scalar.

Example 2. Consider the vector field on R2 illus-
trated in figure 3. It’s described by the function
f : R2 → R2 where

f(x, y) = (x + y, x− y).

The first component function of f is f1(x, y) = x+y,
while the second component function is f2(x, y) =
x− y.

You can visualize this vector field if at each point
(x, y) in the plane you attach a vector whose value
is (x + y, x− y). For instance, the vector attached
to (0, 1) is (1,−1) pointing down and right, while
the vector attached to (1, 0) is (1, 1) pointing up
and right.

Taken together, all the vectors in the vector field
appears as a flow in the plane. We’ll use that anal-
ogy to understand vector fields.
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Vector fields in 3-space can be understood in the
same way, but they can’t be drawn.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/
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