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Last time. Introduced partial derivatives like
∂f

∂x
of scalar-valued functions Rn → R, also called
scalar fields on Rn.

Total derivatives. We’ve seen what partial
derivatives of scalar-valued functions f : Rn → R
are and what they mean geometrically. But if these
are only partial derivatives, then what is the ‘total’
derivative? The answer will be, more or less, that
the partial derivatives, taken together, form the to-
tal derivative.

First, we’ll develop the concept of total derivative
for a scalar-valued function f : R2 → R, that is, a
scalar field on the plane R2. We’ll find that that
total derivative is what we’ll call the gradient of
f , denoted ∇f . Next, we’ll slightly generalize that
to a scalar-valued function f : Rn → R defined
on n-space Rn. Finally we’ll generalize that to a
vector-valued function f : Rn → Rm.

The gradient of a function R2 → R. Let f be
a function R2 → R. The graph of this function,
z = f(x, y), is a surface in R3. We would like the
derivative of f to be the ‘slope’ of the tangent plane.
But a plane doesn’t have a single slope; it slopes
differently in different directions. The plane tan-
gent to this surface and passing through the point
(a, b, f(a, b)) has the equation

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Here, fx(a, b) is the partial derivative of f evaluated
at (a, b), and it’s the slope in the x-direction. Like-
wise fy(a, b) is the slope in the y-direction. These
two slopes determine the plane, and we’ll see soon
how to compute slopes in other directions from

Figure 1: A Lyre of Ur

them. In that sense, the pair of these two slopes
will do what we want the ‘slope’ of the plane to be.

We’ll call the vector whose coordinates are these
partial derivatives the gradient of f , denoted ∇f ,
or gradf .

The symbol ∇ is a nabla, and is pronounced
“del” even though it’s an upside down delta. The
word nabla is a variant of nevel or nebel, an an-
cient harp or lyre. One is shown in figure 1. See
the wiki article on the Lyres of Ur, the oldest sur-
viving stringed instruments.

When n = 2, the gradient of the scalar field f :
R2 → R is

∇f =

(
∂f

∂x
,
∂f

∂y

)
.

Note that the partial derivatives
∂f

∂x
and

∂f

∂y
are

actually functions of two variables, R2 → R, there-
fore, the gradient is also a function of two variables,
but it’s a vector-valued function, ∇f : R2 → R2,

∇f(x, y) = (fx, fy) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
.
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Thus, whereas f was a scaler field, its gradient ∇f
is a vector field.

Figure 2: z = ye3x+4y

Example. Let f(x, y) = ye3x+4y. Its graph is
shown in figure 2. Note that there’s a deep val-
ley in the 4th quadrant of the xy-plane. Also, the
surface rises very quickly for positive values of y.

First, compute the partial derivatives of f . You’ll
find that ∂f

∂x
= 3ye3x+4y, and, by the product rule,

∂f
∂y

= e3x+4y + 4ye3x+4y. Therefore, the gradient of
f is

∇f(x, y) =
(

∂f
∂x

(x, y), ∂f
∂y

(x, y)
)

= (3ye3x+4y, e3x+4y + 4ye3x+4y).

The gradient if f is illustrated in figure 3. The
vectors in this vector field point in the direction
of fastest ascent. In the 4th quadrant, they point
left meaning that the quickest way up out of that
deep valley is to decrease x. In the 1st and 2nd
quadrants, the up the surface is to increase y.

Tangent planes and differentiability. Some-
times, the partial derivatives don’t tell the whole
story. There may be derivatives in both the x- and
y-directions, that is, there may be tangent lines in

Figure 3: Vector field ∇f(x, y)

both these directions, but there might not be a
tangent plane. For the ordinary functions we en-
counter, there is always a tangent plane, but you
can construct weird functions that don’t have them.
The question becomes: how can you tell if a func-
tion has a tangent plane?

We know, if there is a tangent plane, then its
equation will be

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

So the question becomes: how can you tell if this
plane actually is a tangent plane? The answer is
that the linear function

h(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is a good approximation to the function f(x, y) near
(a, b). More precisely, the vertical distance between
f(x, y) and h(x, y) approaches 0 much faster than
the horizontal distance between (x, y) and (a, b).
That, in turn, can be described in terms of limits
of ratios as follows:

lim
(x,y)→(a,b)

f(x, y)− h(x, y)

‖(x, y)− (a, b)‖
= 0.

(Note that this limit is a vector limit.)
That leads us to our definition of differentiability

for a function f : R2 → R. We’ll say f is differen-
tiable at (a, b) if, first, the partial derivatives fxand
fy exist, and, second, the linear function

h(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)
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defined by the partial derivatives is a good approx-
imation of f at (a, b) in the sense that

lim
(x,y)→(a,b)

f(x, y)− h(x, y)

‖(x, y)− (a, b)‖
= 0.

Then, when a function is differentiable, we’ll take
the gradient, ∇f , which is the vector of partial
derivatives, to be the derivative.

Most common functions are differentiable.
Partial derivatives are easy to compute, so it’s easy
to show the first condition of differentiability is sat-
isfied just by exhibiting the derivatives. We expect
the second condition to usually hold, and it does. A
useful theorem (which we won’t prove), says that
if the partial derivatives are continuous, then the
second condition holds, so the function is differen-
tiable. That means, in practice, that the partial
derivatives are enough.

Generalize to scalar-valued functions Rn →
R with n > 2. Given a scalar-valued function
f : Rn → R, we’ll say f is differentiable at a when
it’s partial derivatives fx1(a), fx2(a), . . . , fxn(a) ex-
ist and the linear function h(x) =

f(a)+fx1(a)(x1−a1)+fx2(a)(x2−a2)+· · ·+fxn(a)(xn−an)

is a good approximation of f near a in the sense
that

lim
x→a

f(x)− h(x)

‖x− a‖
= 0.

Since h(x) can be rewritten in terms of dot products
and the gradient as

h(x) = f(a) +∇f(a) · (x− a),

that last limit can be also be written as

lim
x→a

f(x)− [f(a) +∇f(a) · (x− a)]

‖x− a‖
= 0.

This last condition is analogous to the condition of
differentiability for ordinary functions f : R → R
that looks like

lim
x→a

f(x)− [f(a) + f ′(a)(x− a)]

(x− a)
= 0.

In summary, for scalar-valued functions f :
Rn → R, the gradient

∇f = (fx1 , fx2 , . . . , fxn) =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)
is the derivative.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/
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