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The definition of limits. We’re going to define
derivatives for multivariate functions in terms of
limits just as we defined derivatives for ordinary
functions in calculus. So, before we get to deriva-
tives, we’ll first have to define limits of multivariate
functions.

Given a function f : Rn → Rm we want to define
the limit

lim
x→a

f(x) = L.

Sometimes we’ll also express that limit notationally
as

As x→ a,x→ L.

These notations are meant to express the concept
that as the vector x approaches the constant vector
a in Rn, the vector f(x) approaches the constant
vector L in Rm.

As in calculus, we’ll use quantified ε’s and δ’s.
Intuitively, the definition will say that lim

x→a
f(x) =

L if and only if the distance between f(x) and L,
that is, ‖f(x) − L‖, can be made arbitrarily small
by making the distance between x and a, that is,
‖x− a‖, sufficiently small.

More precisely, lim
x→a

f(x) = L if and only if for

each ε > 0 there is a δ > 0 such that 0 < ‖x−a‖ < δ
implies ‖f(x)− L‖ < ε.

Just as in ordinary calculus, we usually can’t
evaluate f at a. In particular, we’re going to de-
fine derivatives in terms of limits of quotients as
h → 0, and as each of those quotients will have h
in the denominator, therefore the quotient won’t be
defined when h = 0. That explains why we have
the condition 0 < ‖x−a‖ in the definition; it’s just
another way of saying x 6= a.

About some topological concepts. In the
text there’s a discussion of various topological
concepts—open, closed, boundary, neighborhood,
and accumulation point. These are particularly im-
portant when the concepts of limit and continuity
are extended to more general spaces, but for the
time being, we’ll just survey them in passing. They
won’t be used for a while.

Properties of limits. Recall from calculus the
important properties of limits of functions f : R→
R.

First, if a limit exists, then it is unique. That is,
if L 6= M , then lim

x→a
f(x) can’t be both L and M .

That property justifies using the notation of equal-
ity in the expression lim

x→a
f(x) = L. The analogous

property holds for vector limits lim
x→a

f(x), and the

reason is pretty much the same, but at one point
in the proof, the triangle inequality is necessary for
the vector case. The triangle inequality for scalars
reads

|a− c| ≤ |a− b|+ |b− c|,

where a, b, and c are scalars. The triangle inequal-
ity for vectors a,b, c ∈ Rn says

‖a− c‖ ≤ ‖a− b‖+ ‖b− c‖,

and for vectors, there really is a triangle. When b is
the 0 vector, you get a simpler form of the triangle
inequality, namely,

‖a− c‖ ≤ ‖a‖+ ‖c‖.

Next, for functions of one variable, the limit of a
constant is that constant, that is

lim
x→a

c = c

where c is any scalar constant. The same thing
holds for vectors, that is,

lim
x→a

c = c

where c is any constant vector in Rn.
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Also, the limit of x as x→ a is a itself, that is,

lim
x→a

x = a.

Of course, that will be true in the vector case, too:

lim
x→a

x = a.

Next for functions of one variable, there’s the
limit of the sum is the sum of the limit, that is,

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x).

Again, that property holds too for multivariate lim-
its

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x),

The argument is the same in the vector case, but
at one point in the proof, the triangle inequality is
necessary. Likewise, the limit of the difference is
the difference of the limits.

There are several different kinds of products
that consider. We could have the product of
a scalar function and a vector-valued function,
f(x) g(x); the dot product of two vector-valued
functions, f(x) · g(x); or the cross product of two
3-dimensional vector-valued functions, f(x)×g(x).
In each case, the product of the limits is the limit
of the product.

Finally, the limit of the quotient is the quotient
of the limits, provided the denominator does not
approach 0 (and notice that the denominator has
to be a scalar for the quotient to be defined).

All the proofs are like those in the scalar case,
complicated in the cases of dot products and cross
products by their definitions in terms of sums of
products.

Thus, all the usual properties that hold for scalar
limits also hold for vector limits.

Continuous functions. Recall from calculus of
one variable that a function f : R→ R is continu-
ous at a if

lim
x→a

f(x) = f(a).

Also, we say a function is continuous if it is contin-
uous at every number a in its domain.

Since limits preserve sums, differences, various
kinds of products, and quotients, we know that the
sum, difference, various products, and quotient of
continuous functions are continuous (assuming, of
course, for the quotient, that the denominator is a
scalar, and it’s not zero).

Most useful functions of one variable are con-
tinuous, but there are a few exceptions. For in-
stance, step functions are continuous except at their
steps, that is, where there are jump discontinu-
ities. But polynomials, trig functions, power and
root functions, logarithms, and exponential func-
tions are all continuous. Furthermore, sums, dif-
ferences, products, quotients, and compositions of
continuous functions are continuous.

We use the analogous condition to define con-
tinuous multivariate functions. We say a function
f : Rn → Rm is continuous at a ∈ Rn if

lim
x→a

f(x) = f(a).

As you might expect, the useful multivariate func-
tions are continuous. Also, sums, differences, prod-
ucts, quotients, and compositions of continuous
multivariate functions are continuous.

Polynomials. You’re familiar with polynomials
in one variable x. These are functions f : R → R
defined by

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

where the coefficients ad, ad−1, ..., a1, a0 are all
scalar constants, and the leading coefficient ad is
not 0. The number d is the degree of the poly-
nomial. Such a polynomial can also be written in
summation notation as

f(x) =
d∑

k=0

akx
k.

Since polynomials are built from constants, x, ad-
dition, and multiplication, they’re all continuous
everywhere.
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A polynomial in two variables x and y is a scalar-
valued function f : R2 → R defined by

f(x, y) =
d∑

k=0

d∑
l=0

aklx
kyl.

For instance, f(x, y) = 2x2y2−3x2y+5x2 +6xy2−
xy−7x+4y2+3y−1 is a polynomial of two variables.
Again, since polynomials of two (or more) variables
are built from constants, x, y, addition, and mul-
tiplication, they’re all continuous everywhere. The
degree of a polynomial of several variables is de-
fined to be the maximum degree of all its monomial
terms, and the degree of a monomial is defined to be
the sum of the exponents of variables that appear
in it. So, for instance, the polynomial f(x, y) given
above has degree 4 since the monomial 2x2y2 has
degree 4 and the rest of the monomials in f have
lower degree.

Rational functions are quotients of polynomi-
als, and whether they have one or more vari-
ables, they’re continuous everywhere they’re de-
fined. (They’re not defined when their denomina-
tors are 0.)

Component functions. Recall that a vector-
valued function f : Rn → Rm is determined
by its its m scalar-valued component functions
f1, f2, . . . , fm : Rn → R,

f(x) = (f1(x), f1(x), . . . , fm(x)).

If each of these component functions has a limit,

lim
x→a

fi(x) = Li,

then f also has a limit

lim
x→a

f(x) = (L1, L2, . . . , Lm),

and conversely.
From that observation, it follows that a vector-

valued function f is continuous if and only if all of
its component functions are continuous.

Some discontinuous functions. Recall from
calculus that one of the typical reasons a limit
lim
x→a

f(x) does not exist is that the left and right

limits don’t agree.
On a line, there are two ways to approach a point,

from the left side and from the right side. But in
higher dimensions, there are infinitely many ways
to approach a point. Consider the example,

f(x, y) =
x2 − y2

x2 + y2
.

Figure 1: A singularity at (x, y) = (0, 0)

The limit, lim
(x,y)→(0,0)

f(x, y) does not exist be-

cause different values are approached depending on
whether you approach the origin (0, 0) along the x-
axis or the y-axis. Along the x-axis, where y = 0,
f(x, 0) = 1, but along the y-axis, where x = 0,
f(0, y) = −1. And, of course f(0, 0) is not defined.
There’s a “singularity” when (x, y) = (0, 0).

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/
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