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Preview. We’ll start our study of line integrals.
For the next few meetings we’ll study line integrals.
First, we’ll see just what line integrals are, both
scalar line integrals and vector line integrals. Sec-
ond, we’ll discuss Green’s theorem. Green’s theo-
rem relates a double integral over a plane region to
a line integral around the boundary of that plane
region. Finally, we’ll look at conservative vector
fields and curls.

Scalar line integrals. So, what is a line integral?
It’s an integral along a curve. An ordinary integral,∫ b

a

f(s) ds, is the integral along the line segment

[a, b]. We’ll generalize this integral by changing the
line segment [a, b] of the x-axis to a segment of any
curve in Rn. When we do that, we’ll take the inte-
grand f(x) to be a scalar-valued function Rn → R.
(Soon, we’ll look at vector-valued functions, too.)

The natural parameterization of a curve is by its
arclength s that we discussed a while ago. For that
parameterization, a path x : R→ Rn in Rn has the
property that ‖x′(s)‖ = 1 for all s. It means that a
point is travelling the path at unit speed. At each
point x(s) on the path, the function f has a value,

f(x(s)). Just as the ordinary integral,

∫ b

a

f(s) ds,

sums the values of f along the line segment [a, b]

on the x-axis, the line integral,

∫ b

a

f(x(s)) ds, sums

the values of f along the path x(s) as s varies from
a to b. This line integral is variously denoted∫

x

f =

∫
x

f ds =

∫ b

a

f(x(s)) ds.

Typically, a path is not given already
parametrized by its arclength s. Instead, it

is parametrized by a variable t that describes
motion along the curve at a variable speed ‖x′(t)‖.
Rather than reparameterizing the path in terms of
s, another way to directly give the line integral is

∫
x

f ds =

∫ b

a

f(x(t)) ‖x′(t)‖ dt.

Example 1. Evaluate the scalar line integral∫
x

(3x+ xy + z3) ds

where x is the path x(t) = (cos 4t, sin 4t, 3t) for
t ∈ [0, 2π].

Vector line integrals. The vector line integrals
we’re going to look at are integrals of vectors of
a vector field F dotted with unit tangent vectors
T for the curves. Since the integrand is actually
a scalar, the dot product of vectors, the value of
these integrals is also a scalar.

A vector line integral of a vector-valued function
F : Rn → Rm along a path x : [a, b] → Rn is the
integral ∫ b

a

F(x(t)) · x′(t) dt

which we’ll also denote

∫
x

F · ds. Note that the ds

in this notation is a vector, not the scalar ds we
just used for the scalar line integrals.

These vector line integrals can be given in terms
of the unit tangent vector T of a path. Recall that
T is defined by

T(t) =
x′(t)

‖x′(t)‖
=
dx

ds
.

The vector line integral equals∫
x

(F ·T) ds,
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and here’s the proof.∫ b

a

F(x(t)) · x′(t) dt

=

∫ b

a

F(x(t)) · x′(t)

‖x′(t)‖
‖x′(t)‖ dt

=

∫
x

(F ·T) ds

Thus, if we interpret the vector differential ds as
being the product T ds, we can literally define the
vector line integral as∫

x

F · ds =

∫
x

F ·T ds.

This formulation doesn’t depend on the path, that
is it doesn’t depend on the speed a moving point
goes along the curve. But it does depend on which
end of the curve it starts as. If you traverse the
curve in the other direction, the value of the integral
is negated. Thus, the vector line integral depends
on the orientation of the curve.

Example 2. Evaluate the vector line integral∫
x

(3z, y2, 6z) · ds

over the path x(t) = (cos t, sin t, t/3) for t ∈ [0, π].

Differential forms. When the integrand F and
the path x are given by their coordinate functions,
vector integrals are written using what are called
differential forms. Let’s stick to R3 for a while.

Let the vector field F be given coordinatewise as
F = (M,N,P ), that is,

F(x, y, z) = (M(x, y, z), N(x, y, z), P (x, y, z))

and the path x be given, as usual, as

x(t) = (x(t), y(t), z(t)).

Then we can rewrite the vector integral
∫
x

F · ds as∫
x

F · ds

=

∫ b

a

F(x(t)) · x′(t) dt

=

∫ b

a

(M x′(t) +N y′(t) + P z′(t)) dt

=

∫ b

a

(
M

dx

dt
dt+N

dy

dt
dt+ P

dz

dt
dt

)
=

∫ b

a

M dx+N dy + P dz

Here, the differential dx is a notation for
dx

dt
dt.

That last integral is usually abbreviated∫
x

M dx+N dy + P dz.

The part of the expression after the integral sign,
namely,

M dx+N dy + P dz,

is called a differential form. In this course, we’re
taking differential forms as being just notational de-
vices, but they can be abstracted in a way to make
them elements of some abstract algebraic object.

Example 3. Evaluate the line integral∫
C

(x2 − y) dx+ (x− y2) dy

where C is the line segment from (1, 1) to (3, 5).
This will require choosing a parametrization of that
line segment.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/

2

http://math.clarku.edu/~djoyce/ma131/
http://math.clarku.edu/~djoyce/ma131/

