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Last time. We looked at the definition of the
multivariate limit lim

x→a
f(x) = L as

∀ε > 0,∃δ > 0,∀x ∈ Rn,
0 < ‖x− a‖ < δ =⇒ ‖f(x)− L‖ < ε;

some topological concepts; properties of limits; con-
tinuous functions; polynomials of several variables;
component functions.

The derivatives you know. Recall from calcu-
lus that if f : R → R is a scalar-valued func-
tion of one variable, usually denoted y = f(x),
then its derivative at a scalar x, variously denoted

f ′(x), y′,
df(x)

dx
, or

dy

dx
, is defined in terms of limits

as
df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h
.

All the usual rules of differentiation followed from
this definition.

Partial derivatives of scalar fields. We’ll be-
gin our generalization of derivatives by consider-
ing a scalar-valued function of several variables,
f : Rn → R, also called scalar fields on Rn. Al-
though f(x) = f(x1, x2, . . . , xn) depends on n dif-
ferent variables, we can concentrate on what hap-
pens when we change just one of them by leaving
all the other variables fixed. That leads to the con-
cept of “partial derivative.” Let’s take n = 3 so
we don’t have to deal with subscripts, and then
f(x) = f(x, y, z). Let’s let x be the variable that
we allow to change, and fix the other two variables
y and z. Then we’ve converted f to a function of
just one variable, and we already have a concept of
derivative, namely,

lim
h→0

f(x+ h, y, z)− f(x, y, z)

h
.

Note how y and z don’t change in this limit.
This kind of derivative is called a partial deriva-

tive since only one of the variables changes. Fur-
thermore, the concept of limit used here is just the
scalar limit you used in calculus, not the vector
limit we discussed at the last meeting. There are
various notations for this limit, the most common
being a variation of Leibniz’ notation, specifically
∂f

∂x
. The symbol ∂, which is read “partial” is a vari-

ant of the letter d, and it’s only used to emphasize
that there are other partial derivatives besides the
one with respect to x. Thus,

∂f

∂x
(x, y, z) = lim

h→0

f(x+ h, y, z)− f(x, y, z)

h
,

∂f

∂y
(x, y, z) = lim

h→0

f(x, y + h, z)− f(x, y, z)

h
,

∂f

∂z
(x, y, z) = lim

h→0

f(x, y, z + z)− f(x, y, z)

h
.

Sometimes other notations for partial derivatives
are encountered. For instance, Dxf and fx are

sometimes used for the partial derivative
∂f

∂x
. Note

that primes, as in f ′ can’t be used because they
don’t indicate which variable is changing.

Example 1. Let

f(x, y, z) = xz sin(3y + 4z).

When you find
∂f

∂x
, just treat y and z as constants.

Since xz sin(3y+ 4z) is just x times some constant,
therefore its derivative is just that constant, that
is,

∂f

∂x
= z sin(3y + 4z).

Finding
∂f

∂y
is a little more work for this example

since the y is more deeply embedded in the mathe-
matical expression. In particular, the chain rule is
needed.

∂f

∂y
= xz

∂

∂y

(
sin(3y + 4z)

)
= xz

(
cos(3y + 4z)

)
3.
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Finally, finding
∂f

∂z
is even more work since the z

occurs twice in the expression. The function f is a
product of two functions, namely xz and sin(3y +
4z), so we start by using the product rule

∂f

∂z

=

(
∂

∂z
xz

)
sin(3y + 4z) + xz

∂

∂z

(
sin(3y + 4z)

)
= x sin(3y + 4z) + xz

(
cos(3y + 4z)

)
4

There’s really nothing to computing partial
derivatives; they’re just ordinary derivatives where
only one variable actually varies. You’ll see lots
more examples in the text and homework exercises.

Geometric interpretation of partial deriva-
tives. Let’s find the geometric interpretation of a
function f(x, y) of two variables. Our question is:
∂f

∂x
(a, b) is a derivative, so it’s the slope of some

tangent line. What tangent line?

For such a function, its graph z = f(x, y) is a sur-
face in R3. The point above (a, b) on that surface is
(a, b, c), where the height above the (x, y)-plane is
the value c = f(a, b) of the function at (a, b). What-
ever the tangent line is, it passes through this point.
The surface z = f(x, y) doesn’t have just a tangent
line at (a, b, c), it has a whole tangent plane. But if
we hold y fixed at the value b, that tangent plane
intersects the plane y = b in a tangent line, and the

slope of that tangent line is
∂f

∂x
(a, b).

Likewise the tangent plane intersects the plane
x = a in another tangent line, and the slope of that

tangent line is
∂f

∂y
(a, b).

The tangent plane. We now have enough infor-
mation to find the tangent plane. It’s a plane that
passes through the point (a, b, c) = (a, b, f(a, b)),
and we know the lines of intersection of the two
planes x = a and y = b. That’s enough infor-
mation to conclude that the plane tangent to the

surface z = f(x, y) at the point (a, b, f(a, b)) has
the equation

z = f(a, b)+

(
∂f

∂x
(a, b)

)
(x−a)+

(
∂f

∂y
(a, b)

)
(y−b).

In a different notation for partial derivatives, this
equation becomes

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Figure 1: Tangent plane to z = 1− x2 − y2

Example 2. Let f(x, y) = 1− x2 − y2. The graph
of this function is a paraboloid shown in figure 1.
Let (a, b) = (1

4
, 1
2
). Then f(1

4
, 1
2
) = 11

16
. We’ll find

the plane tangent to this surface at (1
4
, 1
2
, 11
16

).
The partial derivatives of f are fx(x, y) = −2x

and fy(x, y) = −2y. Their values at (a, b) = (1
4
, 1
2
)

are fx(1
4
, 1
2
) = −1

2
and fy(

1
4
, 1
2
) = −1. So the slope

of the tangent plane in the x-direction is −1
2
, while

the slope of the tangent plane in the y-direction is
−1. Therefore, the equation of the tangent plane is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)
= 11

16
− 1

2
(x− 1

4
)− (y − 1

2
)
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