Section 2.1 selected answers
Math 131 Multivariate Calculus
D Joyce, Spring 2014

Exercises 1–7, 10, 15–21 odd, 31, 39.

2. Let \(g : \mathbb{R}^2 \to \mathbb{R} \) be given by \(g(x, y) = 2x^2 + 3y^2 - 7 \).

(a) Find the domain and range of \(g \).

Since \(g \) is always defined, its domain is all of \(\mathbb{R}^2 \). Since \(x^2 \) and \(y^2 \) are always each \(\geq 0 \), the minimum value of \(g \) is \(-7 \). Therefore, its range is the interval \([-7, \infty)\).

(b) Restrict the domain of \(g \) to make it one-to-one.

The problem is that \(g \) has the same values for many values of \((x, y)\). For instance, on the entire ellipse \(2x^2 + 3y^2 = 7 \), \(g \) has the value 0. One solution, out of many possible solutions, is to make \(y = 0 \) and \(x \geq 0 \). When that restriction is made, \(g \) becomes one-to-one.

(c) Restrict the codomain of \(g \) to make it onto.

You can always restrict the codomain to the range to make it onto.

4. Find the domain and range of \(f(x, y) = \ln(x + y) \).

In order for \(\ln \) to be defined, \(x + y \) has to be positive. In other words the domain of \(f \) is the set of \((x, y)\) such that \(x + y > 0 \).

Within that domain \(x + y \) can be any positive number, so the range of \(f \) is just the range of \(\ln \), and the range of \(\ln \) is all of \(\mathbb{R} \). In order for \(g \) to be defined, there are two requirements. First, \(4 - x^2 - y^2 - z^2 \) has to be \(\geq 0 \) so that its square root is defined. Second, \(\sqrt{4 - x^2 - y^2 - z^2} \) cannot be 0, since it’s in a denominator. Together, these conditions require \(x^2 + y^2 + z^2 < 4 \). If you want to write that in set notation, it looks like

\[
\{(x, y, z) \mid x^2 + y^2 + z^2 < 4\}.
\]

This set can be described geometrically as the open ball in \(\mathbb{R}^3 \) of radius 2 about the origin.

Next, to determine the range, note that the denominator is a positive number, but it can’t be larger than 2 since the maximum of \(\sqrt{4 - x^2 - y^2 - z^2} \) is \(\sqrt{2} \). Since the denominator is between 0 and 2, its reciprocal is between \(\frac{1}{2} \) and \(\infty \). Thus, the range is the half-open interval \([\frac{1}{2}, \infty)\).

10. Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be defined by \(f(x) = x + 3j \).

Write out the component functions of \(f \) in terms of the components of the vector \(x \).

Let \(x = (x, y, z) \) as usual. Then

\[
f(x) = x + 3j = (x, y, z) + 3(0, 1, 0) = (x, y + 3, z).
\]

Therefore, the component functions are \(f_1(x, y, z) = x, f_2(x, y, z) = y + 3, \) and \(f_3(x, y, z) = z \).

19. Determine level curves and sketch the graph of \(f(x, y) = xy \).

The curve of height \(c \) is the solution set for \(xy = c \). If \(c \neq 0 \), then the curve is a rectangular hyperbola whose asymptotes are the \(x \)- and \(y \)-axes. When \(c = 0 \), the level curve is the union of the \(x \)- and \(y \)-axes. The surface is called a hyperbolic paraboloid.

31. Given a function \(f(x, y) \), can two different level curves of \(f \) intersect? Why or why not?

If the level curve for height \(c \), which is \(f(x, y) = c \), intersects the level curve for height \(d \), which is \(f(x, y) = d \), then \(c = d \). Therefore, the level curves for two distinct heights cannot intersect.
39. Is it possible to find a function \(f(x, y) \) so that the ellipsoid \(\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1 \) is the graph \(z = f(x, y) \)?

To be the graph of a function \(f(x, y) \), for a given vector \((x, y)\) there can be at most one value \(z \) such that \((x, y, z)\) lies on the surface. But for this surface, there will be two, both \(z \) and \(-z\). So this surface is not the graph of a function. It is, however, the union of the graphs of two functions

\[
z = \pm \sqrt{1 - \frac{x^2}{4} - \frac{y^2}{9}}
\]