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Preview. We’ll introduce parametrized surfaces
so we can study surface integrals and generalize the
results we’ve seen from dimension 2 to dimension
3. In dimension 2, we had regions in the plane
and their boundaries were closed curves. Then we
took double integrals over the plane regions and
line integrals over the curves. In dimension 3, we’ll
have regions in space and their boundaries will be
surfaces. Then we’ll take triple integrals over the
solid regions and surface integrals over the surfaces.

That means we’ll have to define surface integrals,
and before that we’ll look at surfaces in more detail.

Surfaces in R3. The general principle of analytic
geometry says that a surface in R3 is given by an
equation in three variables x, y, and z. When the
equation is linear, then the surface is a plane, but
when it’s not linear, then some other surface is de-
scribed.

Of course, graphs f(x, y) = z of functions f :
R2 → R of two variables are surfaces over the
(x, y)-plane. But there are other surfaces that
aren’t graphs of such functions like the unit sphere,
which has the equation x2 + y2 + z2 = 1.

Lots of surfaces arise as level sets of functions
f : R3 → R of three variables, the surface being
given by the equation f(x, y, z) = c for the level c.
For example, the unit sphere is the c = 1 level set
of the function f(x, y, z) = x2 + y2 + z2.

Parameterizing surfaces. Those equations are
fine for describing surfaces, but they don’t work as
well for doing calculus with surfaces. A more useful
way to describe a surface is by parametrizing it.

Whereas a line is parametrized by one variable—
we’ve usually used t—a surface is parametrized by
two variables—we’ll usually use s and t.

It helps to have a standard notation. We’ll use S
to denote the surface in R3 that we’re parametriz-
ing. We’ll use X(s, t) to describe the parametriza-
tion. Then X is a vector-valued function R2 → R3.
The domain D of X is usually not all of R2. The
coordinate functions of X are denoted x, y, and z,
so

X(s, t) = (x(s, t), y(s, t), z(s, t)).

Figure 1: Onion domes

Example 1 (An onion dome). Onion domes are
domes often seen at the tops of Russian Orthodox
churches such as the colorful domes on Saint Basil’s
Cathedral in Moscow. We can model one with the
function X defined by

[
x, y, z

]
=

(1 + cos s) cos t
(1 + sin s) sin t

s


where the domain D of X is the rectangle [−π

3
, π]×

[0, 2π]. This surface S is a surface of revolution
about the z. The variable t describes an angle
around the z-axis. Since z is just s, the base of the
dome is at height z = −π

3
, and the tip is at z = π.

The radius of the dome at height z is 1 + cos z. At
the base, that radius is 1.5, increasing to 2 at z = 0,
then decreasing to 0 at the tip.
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For examples of more surfaces and their param-
eterizations see the Gallery of Surfaces at http://
math.clarku.edu/~djoyce/ma131/gallery.pdf

The tangent plane at a point. Let’s consider a
particular point on the surface. Let it be the point
X(s0, t0), and let’s also denote it

X(s0, t0) = (x0, y0, z0) = (x(s0, t0), y(s0, t0), z(s0, t0)).

We can think of the parametrization X(s, t) as
placing and (s, t)-coordinate system on the surface
S. When t has a specific value t0, we get a “lati-
tude” on S, called an s-coordinate curve, and it’s
denoted X(s, t0). Likewise, when s has a specific
value s0, we get a “longitude” on S, called a t-
coordinate curve, and denoted X(s0, t). These two
coordinate curves pass through the point X(s0, t0).

The tangent vector Ts to the coordinate curve
X(s, t0) is

Ts(s0, t0) =
∂X

∂s
=

(
∂x

∂s
(s0, t0),

∂y

∂s
(s0, t0),

∂z

∂s
(s0, t0)

)
,

while the tangent vector Tt to the coordinate curve
X(s0, t) is

Tt(s0, t0) =
∂X

∂t
=

(
∂x

∂t
(s0, t0),

∂y

∂t
(s0, t0),

∂z

∂t
(s0, t0)

)
.

Together, these two tangent vectors Ts and Tt span
a tangent plane at the point X(s0, t0), at least in the
case that the parametrization X is a C1 function.
(If it’s not C1, then there might not be a tangent
plane.) The easiest way to describe this plane is
to use the normal vector N = Ts × Tt. Properly
written out in full N is

N(s0, t0) = Ts(s0, t0)×Tt(s0, t0).

With this definition of the normal vector N, the
equation of the plane tangent to the surface S at
the point X(s0, t0) is

N(s0, t0) · (x−X(s0, t0)) = 0,

where x is the variable point (x, y, z) on that plane.
If N(s0, t0) has coordinates (A,B,C), then we can
write that equation as

A(x− x0) +B(y − y0) + C(z − z0) = 0.
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