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Linear approximations. Let’s start with a differentiable function, f : R → R, of one
variable. You know that the best linear approximation for f at the point x = a is the linear
polynomial

p1(x) = f(a) + f ′(a) (x− a),

and its graph y = p1(x) is the straight line tangent to the graph y = f(x) of f at the point
(x, y) = (a, f(a)). The definition of the derivative justifies the statement

lim
x→a

f(x)− p1(x)

x− a
= 0,

and that statement is the algebraic formulation of the tangency of the line.
We’ve already generalized this to a differentiable function f : R2 → R of two variables.

We’ve seen that the linear polynomial

p1(x, y) = f(a, b) + Df(a, b) ((x, y)− (a, b))

= f(a, b) +
∂f

∂x
(a, b) (x− a) +

∂f

∂y
(a, b) (y − b)

as a graph which is the plane tangent to the graph z = f(x, y) at the point (x, y, z) =
(a, b, f(a, b)). More generally, for a function f : Rn → R of several variables, the linear
polynomial

p1(x) = f(a) + Df(a) (x− a)

has a graph which is the hyperplane tangent to the graph z = f(x) at the point (x, z) =
(a, f(a)).

Differentials. Now, let dx be a differential of x. For Leibniz that would have been an
infinitesimal, but for us we can take dx to be a vector which we’ll let approach 0. If we take
the last paragraph and (1) replace x − a by dx, (2) replace a by x, and (3) let df , which is
called the total differential of f , be the difference f(x + dx)− f(x), then we see it suggests

df = Df(x) dx,

which looks like

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 + · · ·+ ∂f

∂xn

dxn

when written out is full. The df describes the change in f when the various dxi’s give
the changes in the xi’s. For Leibniz, the equation was an exact equality of infinitesimals.
We can interpret it in three ways. First, the right hand side is the exact value of the linear
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approximating polynomial p1(x). Second, it’s an approximation of the change in f(x). Third,
it’s just a reformulation of the chain rule

df

dt
=

∂f

∂x1

dx1

dt
+

∂f

∂x2

dx2

dt
+ · · ·+ ∂f

∂xn

dxn

dt
.

Taylor polynomials for functions of one variable. The function p1(x) described above
is the first-order Taylor polynomial for a function of several variables. Before looking at
higher-order Taylor polynomials for functions of several variables, let’s recall the higher-order
Taylor polynomials for functions of one variable.

Let f : R → R be a function of one variable with derivatives of whatever order we
need. The first-order Taylor polynomial, p1(x) = f(a) + f ′(a) (x − a), is the best linear
approximation to f . The nth order Taylor polynomial, pn(x) will be the best nth degree
polynomial approximation to f . The second-order Taylor polynomial for f at x = a is

p2(x) = f(a) + f ′(a) (x− a) +
f ′′(a)

2
(x− a)2.

It’s the only quadratic polynomial that has (1) the same value at x = a that f has, (2) the
same first derivative at x = a that f has, and (3) the same second derivative at x = a that f
has. It is so close to f near x = a that the difference between f and p2, called the remainder
term, R2(x) = f(x)− p2(x), approaches 0 as x→ a much faster than (x− a)2 approaches 0,
that is,

lim
x→a

R2(x)

(x− a)2
= 0.

Analogous arguments show that the nth order Taylor polynomial for f at x = a is

pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n,

where f (k) indicates the kth derivative and k! is k factorial. As n increases, the approximations
pn(x) usually get closer to f(x) for values of x near enough to a, so

lim
n→∞

pn(x) = f(x)

for most functions f that we encounter. The “infinite”-order polynomial is called the Taylor
series for f . When the sum of the Taylor series is equal to f for values of x near a, which it
usually is, we say f is analytic near a. But for the time being, we’re only interested in the
polynomials, and to begin with, only the quadratic polynomials.

Second-order Taylor polynomials for functions of several variables. Let’s start
with functions of two variables. Using the same techniques that we used for a function of one
variable, you can show that the best second-order approximation for f : R2 → R at x = a is
the function

p2(x, y) = f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)

+
1

2

(
fxx(a, b) (x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b) (y − b)2

)
.
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The graph of the second-order Taylor polynomial p2(x, y) is the quadric surface that best
approximates the graph of f at (a, b). Later in this chapter we’ll use p2 to help us determine
whether a critical point of f (an x such that ∂f

dx
(x) = 0 and ∂f

dy
(x) = 0) gives a maximum of

f , a minimum of f , or neither.
This result for functions of two variables generalizes to functions f : Rn → R of n

variables. Using summation notation and vector notation,

p2(x) = f(a) +
n∑

i=1

fxi
(a) (xi − ai)

+ 1
2

n∑
i,j=1

fxixj
(a) (xi − ai)(xj − aj)

You can imagine how to generalize this to higher-order Taylor polynomials of functions
of several variables.

The Hessian. When we looked at the first-order approximation p1, we found a way to
express the total differential df in terms of partial derivatives. Now we’ll do something like
that with the second-order approximation p2. Define the Hessian H as this n× n matrix of
second-order partial derivatives

Hf =


fx1x1 fx1x2 · · · fx1xn

fx2x1 fx2x2 · · · fx2xn

...
...

. . .
...

fxnx1 fxnx2 · · · fxnxn


Then the last part of the second-order Taylor’s formula, the part

1
2

n∑
i,j=1

fxixj
(a) (xi − ai)(xj − aj)

can be written as
1
2
hT Hf(a) h

where h is the column matrix of differences

h =


h1

h2
...
hn

 =


x1 − a1
x2 − a2

...
xn − an

 ,

and hT is the transpose of h. Then the second-order Taylor polynomial can be written as

p2(x) = f(a) + Df(a) h + 1
2
hT Hf(a) h.

This p2(x) is the second-order approximation for f at a.
Ludwig Otto Hesse (1811–1874) introduced this matrix and its determinant in his study

of algebraic curves.

Math 131 Home Page at http://math.clarku.edu/~djoyce/ma131/
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