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Linear approximations. Let’s start with a differentiable function, f : R — R, of one
variable. You know that the best linear approximation for f at the point x = a is the linear
polynomial

pi(x) = f(a) + f'(a) (z — a),

and its graph y = p;(z) is the straight line tangent to the graph y = f(z) of f at the point
(z,y) = (a, f(a)). The definition of the derivative justifies the statement

i 1@ = pi(@)
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and that statement is the algebraic formulation of the tangency of the line.
We've already generalized this to a differentiable function f : R?> — R of two variables.
We’ve seen that the linear polynomial

pi(z,y) = fla,b)+ Df(a,b) ((z,y) — (a,b))
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as a graph which is the plane tangent to the graph z = f(z,y) at the point (z,y,z) =
(a,b, f(a,b)). More generally, for a function f : R®™ — R of several variables, the linear
polynomial

pi(x) = f(a) + Df(a) (x — a)

has a graph which is the hyperplane tangent to the graph z = f(x) at the point (x,z) =
(a, f(a)).

Differentials. Now, let dx be a differential of x. For Leibniz that would have been an
infinitesimal, but for us we can take dx to be a vector which we’ll let approach 0. If we take
the last paragraph and (1) replace x — a by dx, (2) replace a by x, and (3) let df, which is
called the total differential of f, be the difference f(x + dx) — f(x), then we see it suggests

df = Df(x) dx,
which looks like of o7 of
df = =——d —d e d
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when written out is full. The df describes the change in f when the various dz;’s give
the changes in the x;’s. For Leibniz, the equation was an exact equality of infinitesimals.
We can interpret it in three ways. First, the right hand side is the exact value of the linear
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approximating polynomial p;(x). Second, it’s an approximation of the change in f(x). Third,
it’s just a reformulation of the chain rule
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Taylor polynomials for functions of one variable. The function p;(x) described above
is the first-order Taylor polynomial for a function of several variables. Before looking at
higher-order Taylor polynomials for functions of several variables, let’s recall the higher-order
Taylor polynomials for functions of one variable.

Let f : R — R be a function of one variable with derivatives of whatever order we
need. The first-order Taylor polynomial, p;(z) = f(a) + f'(a) (x — a), is the best linear
approximation to f. The n'® order Taylor polynomial, p,(x) will be the best n'® degree
polynomial approximation to f. The second-order Taylor polynomial for f at x = a is

_ : f"(a) 2

p2(z) = fla) + fa) (z —a) + —~ (2 — a)".
It’s the only quadratic polynomial that has (1) the same value at x = a that f has, (2) the
same first derivative at © = a that f has, and (3) the same second derivative at x = a that f
has. It is so close to f near x = a that the difference between f and ps, called the remainder
term, Ry(z) = f(x) — p2(z), approaches 0 as  — a much faster than (z — a)? approaches 0,

that is,
R

lim 2(2)

2a (2 — a)?

=0.

Analogous arguments show that the n'" order Taylor polynomial for f at z = a is

"(a ™) (q
pula) = fa) + F@—a)+ LD o g L

(ZE - a)n)

where f*) indicates the k*® derivative and k! is k factorial. Asn increases, the approximations
pn(x) usually get closer to f(x) for values of x near enough to a, so

lim p,(z) = f(x)

n—oo
for most functions f that we encounter. The “infinite”-order polynomial is called the Taylor
series for f. When the sum of the Taylor series is equal to f for values of x near a, which it

usually is, we say f is analytic near a. But for the time being, we're only interested in the
polynomials, and to begin with, only the quadratic polynomials.

Second-order Taylor polynomials for functions of several variables. Let’s start
with functions of two variables. Using the same techniques that we used for a function of one
variable, you can show that the best second-order approximation for f : R? — R at x = a is
the function

pg(x,y) = f(avb) + fx(avb) (.’B - a) + fy<a7b) (y - b)
4 2 () (2= ) 2y 0,D)x — )y =) + ) (5~ D).
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The graph of the second-order Taylor polynomial py(x,y) is the quadric surface that best
approximates the graph of f at (a,b). Later in this chapter we’ll use ps to help us determine
whether a critical point of f (an x such that %(x) =0 and Z—i(x) = 0) gives a maximum of
f, a minimum of f, or neither.

This result for functions of two variables generalizes to functions f : R"™ — R of n
variables. Using summation notation and vector notation,

p2(x) = f(a)+ Z fri(@) (2i = ai)

+ 3D fowy(@) (@ = ai)(w; — ay)

,j=1

You can imagine how to generalize this to higher-order Taylor polynomials of functions
of several variables.

The Hessian. When we looked at the first-order approximation p;, we found a way to
express the total differential df in terms of partial derivatives. Now we’ll do something like
that with the second-order approximation ps. Define the Hessian H as this n X n matrix of
second-order partial derivatives

fmfbl fmwz f21xn

fxnz1 fxnxg f:cnxn

Then the last part of the second-order Taylor’s formula, the part

2D fry (@) (@ — ai) (2 — ay)

,j=1

can be written as

%hT Hf(a)h
where h is the column matrix of differences
hq T — aq
L ho _ To — Qo |
hy, Ty, — Qy,

and h” is the transpose of h. Then the second-order Taylor polynomial can be written as
p2(x) = f(a) + Df(a)h + sh" Hf(a)h.

This pe(x) is the second-order approximation for f at a.
Ludwig Otto Hesse (1811-1874) introduced this matrix and its determinant in his study
of algebraic curves.
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