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Introduction of vector fields. We’ll examine
vector fields. Some of those will be gradient fields,
that is, vector fields which are gradients of scalar
functions, but many won’t be. We’'ll also look at
the flow lines of vector fields.

A wector field is a vector-valued function F :
R" — R from a vector space to itself. We can
do more with a vector field than a general vector-
valued function because when the domain and
codomain are the same, a vector x and the vector-
field value F(x) can interact in ways that can’t
happen when the domain and codomain aren’t the
same. We'll be using them a lot in the rest of the
course.

We can draw plane vector fields by attaching
small arrows at points in the plane to represent the
vectors at those points.

S,
w

[
t
|

41+
l

Figure 1: A radial vector field

Example 1 (A radial vector field). We'll look as
several vector fields in the plane, and draw them
by drawing a few vectors F(x) with their tails at-
tached to the points x. For instance, the vector
field F(x) = (1, 1) is a constant vector field with all
the vector field arrows being parallel.

Figure 1 illustrates an example of a radial field,
namely the field F(z,y) = (z,y). All the vectors
point away from the origin with short vectors nearer
the origin and longer vectors far from the origin.
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Figure 2: A circular vector field

Example 2 (A circular vector field). Another ex-
ample is the vector field F(x,y) = (—y,x) whose
arrows rotate around the origin. It’s shown in fig-
ure 2. Again, short vectors near the origin and long
ones further away, but this time they don’t point
away from the origin but in a direction orthogonal
to the direction to the origin.

Example 3 (Spatial vector field). An example vec-
tor field on R? is what is called the inverse square
vector field defined by
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where ¢ is a constant. It’s also a radial vector
field. When ¢ = —GMm, it describes the grav-
itational field with a point mass M at the origin

F(x) =



and a point mass m at the point r, where G is
the universal gravitational constant. Alternatively,
when ¢ = kqiqo, it describes the electrostatic force
between two point charges, ¢; and g9, and k is a
constant.

Figure 3: z = f(x,y) and its gradient field

Gradient fields. Recall that when f : R" —
R is a scalar field, its gradient V f, which we will
sometimes denote F, is a vector field Vf : R" —
R".

There’s some special terminology that goes along
with this. When a vector field F is the gradient of
a scalar field f, we say F is a gradient field, and we
say f is a potential function for F. See figure 3 for
an example potential function f : R? — R and its
gradient field V f. Later, we’ll find conditions on F
that tell us when a vector-field is a gradient field.

Often, a potential function f for a vector field F
is defined so that F = —V f instead of F = +V f.

Example 4. A potential function for the inverse

square field F(x) = —° X is the function f(x) =
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Equipotential sets. Suppose that F is the gra-
dient field for the potential field f. Recall that the
level set for f at a scalar constant c is the set

{x|f(x) =¢c}.

Level sets of potential fields are also called equipo-
tential sets. When n = 2 they’re called equipoten-
tial lines (or curves), and when n = 3 they're called
equipotential surfaces. Since, in general, gradients
are orthogonal to level sets, therefore, the vectors
of a vector field are orthogonal to potential sets.
(See the diagrams in the text.)

Flow lines of vector fields. Let F : R" — R"
be a vector field (not necessarily a gradient field).
You can imagine some of the vectors in a vector
field connected together to make a curve. More pre-
cisely, imagine a path x : R — R" whose velocity
vectors x'(t) are vectors in this vector field. Such
a path is called a flow line of the vector field. The
requirement that the velocity vectors be vectors in
the vector field is the equation

Another way of saying this is that a flow line is a
solution to a system of differential equation. When
n = 2, the two differential equations are
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Example 5 (Constant vector field). For the con-
stant the vector field F(x) = (1, 1), the flow lines
are the parallel straight paths (z(t), y(t)) = (¢,t+c)

where different values of the constant ¢ give differ-
ent lines.

Example 6 (Rotational vector field). For the field
G(z,y) = (—y,z) illustrated in figure 2, the flow
lines are paths on circles of various radii c:

(x(t),y(t)) = (ccost,csint)

(@'(t),y'(t)) = (—csint, ccost) = (—y(t), x(t)).

Example 7 (Equiangular spirals). Consider the
vector field T(z,y) = (z — y,z + y) displayed in
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Figure 4: Equiangular spirals

figure 4. A flow line for this vector field satisfies
the pair of differential equations
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The general solution to this differential equation is
(z,y) = (Ae’ cost, Ae’sint)

where A is any constant. In polar form, the solu-
tions are » = Aet, # = t. The curves r = Ae’ are
equiangular spirals, what Jacob Bernoulli (1654-
1705) called Spira mirabilis.
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