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We’ll discuss on paths, that is, moving points.
There isn’t much to the concept of path. We’re pri-
marily interested in the first and second derivatives
of paths, called velocity and acceleration, respec-
tively.

The major illustration of these concepts in the
text is a derivation of Kepler’s laws of planetary
motion from Newton’s laws of gravity. We’ll look
at that next.

Paths and parameterized curves. A function
x : R → Rn can be interpreted in different ways.
You can think of it as giving the position x(t), also
called the position vector, of a point at time t. Or
you can think of it as a way of parameterizing a
curve where for each value of t a different point
x(t) on the curve is named. Either way, we’ll call
x : R→ Rn a path in Rn.

Frequently, the domain isn’t all of R but just a
finite interval, I = [a, b] with endpoints a and b. In
that case x(a) is the initial position, and x(b) is the
final position.

We generally treat the path x : R → Rn as a
dynamic thing, but its image, which is a curve, a
particular subset of Rn, as static thing.

For the discussion that follows, x denotes one of
these functions x : R → Rn which we’ll variously
refer to as a path, moving point, position function,
or position vector.

Velocity, speed, and acceleration. We call the
derivative of x its velocity, and often denote it x′.
This is pretty much Newton’s notation although he
used a dot above the variable instead of a prime.
Its second derivative x′′ is its acceleration. Both
velocity and acceleration are vectors. We define its

speed, ‖x′‖, to be the length of velocity, so speed is
a nonnegative scalar.

So, at a time t, an object has a position x = x(t);
a velocity x′ = x′(t), which is sometimes denoted
v = v(t); an acceleration x′′ = x′′(t), which is
sometimes denoted a = a(t); and a speed |x′|.

Example 1. Consider the moving point in the
plane

x = (x, y) = (t4 − 2t2, t3 − 2t)

defined for t in the interval [−1.5, 1.5]. It’s dis-
played in figure 1. This x is a moving point, that
is, a path. The initial position when t = −1.5 is
the point (0.56, 0.37), and the final position when
t = 1.5 is the point (0.56,−0.37). The point passes
through the origin three times, first when t = −

√
2,

then when t = 0, and again when t =
√

2.

Figure 1: Path x = (t4 − 2t2, t3 − 2t)

Its image is the curve

{(t4 − 2t2, t3 − 2t) | − 1.5 ≤ t ≤ 1.5}.

If you solve the pair of equations x = t4 − 2t2 and
y = t3−2t simultaneously for x and y and eliminate
t in the process, then you’ll get the single equation
y4 = x(x2 − 2y2). This image is, therefore, part of
this curve.
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The velocity at time t is

v = x′ = (4t3 − 2t, 3t2 − 2)

and the acceleration is

a = x′′ = (12t2 − 2, 6t).

The speed at time t is

‖x′‖ = ‖(4t3 − 2t, 3t2 − 2)‖
=

√
(4t3 − 2t)2 + (3t2 − 2)2

Example 2. Consider the moving point in space

x = (x, y, z) = (cos 3t, sin 4t, sin 5t)

defined for t in the interval [0, 2π]. It’s displayed in
figures 2 and 3 from slightly different perspectives
with the curves thickened and colored so you can
see them better. The initial position when t = 0
and the final position is the same, namely the point
(1, 0, 0). The point swings around and around the
origin like a crazy roller coaster.

Figure 2: x = (cos 3t, sin 4t, sin 5t)

It’s velocity at time t is

v = x′ = (−3 sin 3t, 4 cos 4t, 5 cos 5t)

Figure 3: x = (cos 3t, sin 4t, sin 5t)

and the acceleration is

a = x′′ = (−9 cos 3t,−16 sin 4t,−25 sin 5t).

The speed at time t is

‖x′‖ = ‖(−3 sin 3t, 4 cos 4t, 5 cos 5t)‖
=

√
9 sin2 3t+ 16 cos2 4t+ 25 cos2 5t

Velocities and tangent lines. The tangent line
at a point x0 = x(t0) on a path x is the straight line
passing through x0 in the direction of the velocity
v0 = x′(t0). A parametric equation for this line is

L(t) = x0 + tv0

where t is a scalar variable.
When drawing velocity vectors for a moving

point, they’re usually drawn at the point, and that
means they will fall along the tangent lines in the
direction the point is moving.

Tangents on a circular path. Let’s take, for
example, a path u : R→ R2 on the unit circle, that
is, ‖u(t)‖ = 1 for all t. We’ll show that the velocity
vector u′ is orthogonal to the position vector u, as
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you should expect since the velocity vector ought
to point in a direction tangent to the circle. Since
u = (x, y) is a unit vector, therefore x2 + y2 =
1. Differentiate that equation with respect to t to
get 2xx′ + 2yy′ = 0. Therefore, the dot product,
u · u′, which is (x, y) · (x′, y′), is 0. Thus, u and u′

are orthogonal. Note that this is true whether the
object is moving uniformly or nonuniformly around
the circle.

Vector product rules. Although there is no
multiplication of vectors exactly corresponding to
multiplication of scalars, there are two vector prod-
ucts, namely, dot product and cross product. These
have rules of differentiation like the product rule
when the arguments x and y are functions of one
variable.

(x · y)′ = x′ · y + x · y′

(x× y)′ = x′ × y + x× y′

Note that the order of the factors is important for
the cross product since it’s not commutative.

These rules follow directly from the usual prod-
uct rule and the definitions of dot and cross prod-
uct. For example, here’s the proof of the dot prod-
uct rule in dimension 2.

(x · y)′ =
(
(x1, x2) · (y1, y2)

)′
= (x1y1 + x2y2)

′

= x′1y1 + x1y
′
1 + x′2y2 + x2y

′
2

= x′ · y + x · y′

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/
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