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Covariance. Let X and Y be joint random vari-
ables. Their covariance Cov(X, Y ) is defined by

Cov(X, Y ) = E((X − µX)(Y − µY )).

Notice that the variance of X is just the covariance
of X with itself

Var(X) = E((X − µX)2) = Cov(X,X)

Analogous to the identity for variance

Var(X) = E(X2)− µ2
X

there is an identity for covariance

Cov(X) = E(XY )− µXµY

Here’s the proof:

Cov(X, Y )

= E((X − µX)(Y − µY ))

= E(XY − µXY −XµY + µXµY )

= E(XY )− µXE(Y )− E(X)µY + µXµY

= E(XY )− µXµY

Covariance can be positive, zero, or negative.
Positive indicates that there’s an overall tendency
that when one variable increases, so doe the other,
while negative indicates an overall tendency that
when one increases the other decreases.

If X and Y are independent variables, then their
covariance is 0:

Cov(X, Y ) = E(XY )− µXµY

= E(X)E(Y )− µXµY = 0

The converse, however, is not always true.
Cov(X, Y ) can be 0 for variables that are not inde-
pendent.

For an example where the covariance is 0 but
X and Y aren’t independent, let there be three
outcomes, (−1, 1), (0,−2), and (1, 1), all with the
same probability 1

3
. They’re clearly not indepen-

dent since the value of X determines the value of
Y . Note that µX = 0 and µY = 0, so

Cov(X, Y ) = E((X − µX)(Y − µY ))

= E(XY )

= 1
3
(−1) + 1

3
0 + 1

3
1 = 0

We’ve already seen that when X and Y are in-
dependent, the variance of their sum is the sum of
their variances. There’s a general formula to deal
with their sum when they aren’t independent. A
covariance term appears in that formula.

Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y )

Here’s the proof

Var(X + Y )

= E((X + Y )2)− E(X + Y )2

= E(X2 + 2XY + Y 2)− (µX + µY )2

= E(X2) + 2E(XY ) + E(Y 2)

− µ2
X − 2µXµY − µ2

Y

= E(X2)− µ2
X + 2(E(XY )− µXµY )

+ E(Y 2)− µ2
Y

= Var(X) + 2 Cov(X, Y ) + Var(Y )

Bilinearity of covariance. Covariance is linear
in each coordinate. That means two things. First,
you can pass constants through either coordinate:

Cov(aX, Y ) = aCov(X, Y ) = Cov(X, aY ).

Second, it preserves sums in each coordinate:

Cov(X1 +X2, Y ) = Cov(X1, Y ) + Cov(X2, Y )

and

Cov(X, Y1 + Y2) = Cov(X, Y1) + Cov(X, Y2).
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Here’s a proof of the first equation in the first
condition:

Cov(aX, Y ) = E((aX − E(aX))(Y − E(Y )))

= E(a(X − E(X))(Y − E(Y )))

= aE((X − E(X))(Y − E(Y )))

= aCov(X, Y )

The proof of the second condition is also straight-
forward.

Correlation. The correlation ρXY of two joint
variables X and Y is a normalized version of their
covariance. It’s defined by the equation

ρXY =
Cov(X, Y )

σXσY
.

Note that independent variables have 0 correla-
tion as well as 0 covariance.

By dividing by the product σXσY of the stan-
dard deviations, the correlation becomes bounded
between plus and minus 1.

−1 ≤ ρXY ≤ 1.

There are various ways you can prove that in-
equality. Here’s one. We’ll start by proving

0 ≤ Var

(
X

σX
± Y

σY

)
= 2(1± ρXY ).

There are actually two equations there, and we can
prove them at the same time.

First note the “0 ≤” parts follow from the fact
variance is nonnegative. Next use the property
proved above about the variance of a sum.

Var

(
X

σX
± Y

σY

)
= Var

(
X

σX

)
+ Var

(
±Y
σY

)
+ 2 Cov

(
X

σX
,
±Y
σY

)
Now use the fact that Var(cX) = c2 Var(X) to
rewrite that as

1

σ2
X

Var(X) +
1

σ2
Y

Var(±Y ) + 2 Cov

(
X

σX
,± Y

σY

)

But Var(X) = σ2
X and Var(−Y ) = Var(Y ) = σ2

Y ,
so that equals

2 + 2 Cov

(
X

σX
,
±Y
σY

)
By the bilinearity of covariance, that equals

2± 2

σxσY
Cov(X, Y ) = 2± 2ρXY )

and we’ve shown that

0 ≤ 2(1± ρXY .

Next, divide by 2 move one term to the other side
of the inequality to get

∓ρXY ≤ 1,

so
−1 ≤ ρXY ≤ 1.

This exercise should remind you of the same
kind of thing that goes on in linear algebra. In
fact, it is the same thing exactly. Take a set of
real-valued random variables, not necessarily inde-
pendent. Their linear combinations form a vector
space. Their covariance is the inner product (also
called the dot product or scalar product) of two
vectors in that space.

X · Y = Cov(X, Y )

The norm ‖X‖ of X is the square root of ‖X‖2
defined by

‖X‖2 = X ·X = Cov(X,X) = V (X) = σ2
X

and, so, the angle θ between X and Y is defined by

cos θ =
X · Y
‖X‖ ‖Y ‖

=
Cov(X, Y )

σXσY
= ρXY

that is, θ is the arccosine of the correlation ρXY .
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