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The definition of expected value in the dis-
crete case. Let X be a discrete random variable.
If you average the values that X takes on, weighted
by the probabilities that X takes on those values,
that is, weighted by the probability mass function,
you get

E(X) =
∑
x∈S

xP (X=x) =
∑
x∈S

x f(x)

This is called the expected value, mathematical ex-
pectation, or mean of X, denoted both E(X) and
µX . When there’s only one random variable under
discussion, µX is usually abbreviated to just µ.

When X is a uniform discrete random varable,
then E(X) is just the arithmetic average of the val-
ues of X. For example, the expected value of a fair
die is the average of the numbers 1, 2, 3, 4, 5, and
6, and that average is 3.5 since

3.5 = 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6
.

Expectation of the binomial distribution.
Let Xn be the number of successes in n Bernoulli
trials, where the probability of success is p. This
random variable Xn has a binomial distribution.
We know its probability mass function is f(x) =(
n
x

)
pxqn−x. So the expectation of Xn is

E(Xn) =
n∑
x=0

x

(
n

x

)
pxqn−x.

Let’s write k for x just so that it looks a little more
familiar to us.

E(Xn) =
n∑
k=0

k

(
n

k

)
pkqn−k

We can evaluate that sum on the right by differen-
tiating the equation of the binomial theorem

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Differentiate that equation with respect to x to get

n(x+ y)n−1 =
n∑
k=0

k

(
n

k

)
xk−1yn−k.

Now replace x by p, y by q, and multiply both sides
of the equation by p, and we find that

E(Xn) =
n∑
k=0

k

(
n

k

)
pkqn−k = np.

Therefore, the expected number of successes in n
Bernoulli trials is n times the probability of success
on one trial.

Expectation of a geometric distribution.
Consider the time T to the first success in a
Bernoulli process. With p equal to the proba-
bility of success, we found that T has geomet-
ric distribution with the probability mass function
f(t) = pqt−1. Therefore, its expectation is

E(T ) =
∞∑
t=1

tpqt−1

= p+ 2pq + 3pq2 + · · ·+ npqn−1 + · · ·

To evaluate it, we’ll need to sum the infinite series
somehow. We can do that using properties of power
series.

We know that the geometric series

1 + x+ x2 + · · ·+ xn + · · ·

converges to
1

1− x
when the ratio x lies between

−1 and 1. We can differentiate power series, so
differentiate

1

1− x
= 1 + x+ x2 + · · ·+ xn + · · ·
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to conclude

1

(1− x)2
= 1 + 2x+ 3x2 + · · ·+ nxn−1 + · · ·

for x between −1 and 1. That’s just the series we
have for E(T ) except E(T ) has an extra factor of
p, and q is replaced by x. Therefore,

E(T ) =
p

(1− q)2
=

1

p
.

Thus, the expected time to the first success in a
Bernoulli process is the reciprocal of the probability
of success. So, on average, it takes 2 coin flips to
get the first head. Also, on average, it takes 6 die
tosses to roll the first 5.

The St. Petersburg paradox. This an exam-
ple of a random variable with and infinite expecta-
tion. It’s a game of flipping coins where your payoff
doubles every time you get tails. If you get heads
right off, you’ll be paid $1. If you get tails followed
by heads, you’ll get $2. If two tails before the first
heads, then $4. Your payoff is Y = 2T where T
has a geometric distribution with p = 1/2. Thus,
P (Y=2n) = 1/2n, so the expectation of Y is

E(Y ) =
∞∑
n=1

2n
1

2n
=
∞∑
n=1

1 =∞.

The paradox comes when you try to figure out how
much you should pay in order to play this game.
Note that it has an infinite expected payoff.

Some properties of expectation. There are a
number of these properties. Some are easier to
prove than others.

Expectation of a function of a random vari-
able. If a random variable Y is a function of an-
other random variable X, Y = φ(X), then

E(Y ) =
∑
x∈S

φ(x)P (X=x).

To show this, we’ll expand the definition of the ex-
pectation of Y .

E(Y ) =
∑
y

y P (Y=y)

=
∑
y

y
∑

x | y=φ(x)

P (X=x)

=
∑
x

φ(x)P (X=x)

Linearity of expectation. If X and Y are
two random variables, not necessarily independent,
then

E(X + Y ) = E(X) + E(Y ).

Also, if c is a constant, then

E(cX) = cE(X).

Both of these properties are easy to prove. They
only depend on linearity property of sums, that is,∑

(xk + yk) =
∑

xk +
∑

yk

and ∑
cxk = c

∑
xk.

Expectation preserves products when the
variables are independent. Recall that ran-
dom variables X and Y are independent when for
all their outcomes x and y,

P (X=x ∩ Y=y) = P (X=x)P (Y=y).

If X any Y are independent, then

E(XY ) = E(X)E(Y ),

but when they’re not independent, that equation is
usually false. Here’s the proof when they’re inde-
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pendent. Note the line that uses independence.

E(XY ) =
∑
z

z P (XY=z)

=
∑
z

∑
x,y |xy=z

xy P (X=x and Y=y)

=
∑
x

∑
y

xyP (X=x and Y=y)

=
∑
x

∑
y

xyP (X=x)P (Y=y)

=
∑
x

x

(∑
y

yP (Y=y)

)
P (X=x)

=

(∑
y

yP (Y=y)

)(∑
x

xP (X=x)

)
= E(Y )E(X)

q.e.d.

Math 217 Home Page at http://math.clarku.

edu/~djoyce/ma217/
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