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There are various reasons for studying moments
and the moment generating functions. One of them
that the moment generating function can be used
to prove the central limit theorem.

Moments, central moments, skewness, and
kurtosis. The kth moment of a random variable
X is defined as µk = E(Xk). Thus, the mean is
the first moment, µ = µ1, and the variance can
be found from the first and second moments, σ2 =
µ2 − µ2

1.
The kth central moment is defined as E((X−µ)k).

Thus, the variance is the second central moment.
The higher moments have more obscure mean-

ings as k grows.
A third central moment of the standardized ran-

dom variable X∗ = (X − µ)/σ,

β3 = E((X∗)3) =
E((X − µ)3)

σ3

is called the skewness of X. A distribution that’s
symmetric about its mean has 0 skewness. (In fact
all the odd central moments are 0 for a symmetric
distribution.) But if it has a long tail to the right
and a short one to the left, then it has a positive
skewness, and a negative skewness in the opposite
situation.

A fourth central moment of X∗,

β4 = E((X∗)4) =
E((X − µ)4)

σ4

is callled kurtosis. A fairly flat distribution with
long tails has a high kurtosis, while a short tailed
distribution has a low kurtosis. A bimodal distri-
bution has a very high kurtosis. A normal distri-
bution has a kurtosis of 3. (The word kurtosis was

made up in the early 19th century from the Greek
word for curvature.) Kurtosis is not a particularly
important concept, but I mention it here for com-
pleteness.

It turns out that the whole distribution for X
is determined by all the moments, that is different
distributions can’t have identical moments. That’s
what makes moments important.

The moment generating function. There is a
clever way of organizing all the moments into one
mathematical object, and that object is called the
moment generating function. It’s a function m(t)
of a new variable t defined by

m(t) = E(etX).

Since the exponential function et has the power se-
ries

et =
∞∑
k=0

tk

k!
= 1 + t+

t2

2!
+ · · ·+ tk

k!
+ · · · ,

we can rewrite m(t) as follows

m(t) = E(etX)

= E

(
1 + tX +

(tX)2

2!
+ · · ·+ (tX)k

k!
+ · · ·

)
= 1 + tE(X) +

t2E(X2)

2!
+ · · ·+ tkE(Xk)

k!
+ · · ·

= 1 + tµ1 +
t2µ2

2!
+ · · ·+ tkµk

k!
+ · · ·

= 1 + µ1t+
µ2

2!
t2 + · · ·+ µk

k!
tk + · · ·

Theorem. The kth derivative of m(t) evaluated at
t = 0 is the kth moment µk of X.

In other words, the moment generating function
generates the moments of X by differentiation.

The primary use of moment generating functions
is to develop the theory of probability. For instance,
the easiest way to prove the central limit theorem
is to use moment generating functions.

For discrete distributions, we can also compute
the moment generating function directly in terms
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of the probability mass function f(x) = P (X=x)
as

m(t) = E(etX) =
∑
x

etxf(x).

For continuous distributions, the moment generat-
ing function can be expressed in terms of the prob-
ability density function f as

m(t) = E(etX) =

∫ ∞
−∞

etxfX(x) dx.

Properties of moment generating functions.
Translation. If Y = X + a, then

mY (t) = eatmX(t).

Proof: mY (t) = E(eY t) = E(e(X+a)t) =
E(eXteat) = eatE(eXt) = eatmX(t). q.e.d.

Scaling. If Y = bX, then

mY (t) = mX(bt).

Proof: mY (t) = E(eY t) = E(e(bX)t) = E(eX(bt)) =
mX(bt). q.e.d.

Standardizing. From the last two properties, if

X∗ =
X − µ
σ

is the standardized random variable for X, then

mX∗(t) = e−µt/σmX(t/σ).

Proof: First translate by −µ to get

mX−µ(t) = e−µtmX(t).

Then scale that by a factor of 1/σ to get

m(X−µ)/σ = mX−µ(t/σ)

= e−µt/σmX(t/σ)

q.e.d.

Convolution. If X and Y are independent vari-
ables, and Z = X + Y , then

mZ(t) = mX(t)mY (t).

Proof: mZ(t) = E(eZt) = E(e(X+Y )t) = E(eXteY t).
Now, since X and Y are independent, so are eXt

and eY t. Therefore, E(eXteY t) = E(eXt)E(eY t) =
mX(t)mY (t). q.e.d.

Note that this property of convolution on mo-
ment generating functions implies that for a sam-
ple sum Sn = X1 + X2 + · · · + Xn, the moment
generating function is

mSn(t) = (mX(t))n.

We can couple that with the standardizing prop-
erty to determine the moment generating function
for the standardized sum

S∗n =
Sn − nµ
σ
√
n

.

Since the mean of Sn is nµ and its standard devia-
tion is σ

√
n, so when it’s standardized, we get

mS∗
n
(t) = e−nµt/(σ

√
n)mSn( t

σ
√
n
)

= e−
√
nµt/σmSn( t

σ
√
n
)

= e−
√
nµt/σ

(
mX( t

σ
√
n
)
)n

We’ll use this result when we prove the central limit
theorem

Some examples. The same definitions for these
apply to discrete distributions and continuous ones.
That is, if X is any random variable, then its nth

moment is
µn = E(Xn)

and its moment generating function is

mX(t) = E(etX) =
∞∑
k=0

µk
k!
tk.

The only difference is that when you compute them,
you use sums for discrete distributions but integrals
for continuous ones. That’s because expectation is
defined in terms of sums or integrals in the two
cases. Thus, in the continuous case

µn = E(Xn) =

∫ ∞
−∞

xnfX(x) dx
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and

m(t) = E(etX) =

∫ ∞
−∞

etxfX(x) dx.

We’ll look at one example of a moment gener-
ating function for a discrete distribution and three
for continuous distributions.

The moment generating function for a geo-
metric distribution. Recall that when indepen-
dent Bernoulli trials are repeated, each with prob-
ability p of success, the time X it takes to get the
first success has a geometric distribution.

P (X = j) = qj−1p, for j = 1, 2, . . . .

Let’s compute the generating function for the geo-
metric distribution.

m(t) =
∞∑
j=1

etjqj−1p

=
p

q

∞∑
j=1

etjqj

The series
∞∑
j=1

etjqj =
∞∑
j=1

(etq)j is a geometric series

with sum
etq

1− etq
. Therefore,

m(t) =
p

q

etq

1− etq
=

pet

1− qet
.

From this generating function, we can find the
moments. For instance, µ1 = m′(0). The derivative
of m is

m′(t) =
pet

(1− qet)2
,

so µ1 = m′(0) =
p

(1− q)2
=

1

p
. This agrees with

what we already know, that the mean of the geo-
metric distribution is 1/p.

The moment generating function for a uni-
form distribution on [0, 1]. Let X be uniform
on [0, 1] so that the probability density function fX
has the value 1 on [0, 1] and 0 outside this interval.

Let’s first compute the moments.

µn = E(Xn) =

∫ ∞
−∞

xnfX(x) dx

=

∫ 1

0

xn dx

=
xn+1

n+ 1

∣∣∣∣1
0

=
1

n+ 1

Next, let’s compute the moment generating func-
tion.

m(t) =

∫ ∞
−∞

etxfX(x) dx

=

∫ 1

0

etx dx

=
1

t
etx
∣∣∣∣1
0

=
et − 1

t

Note that the expression for g(t) does not al-
low t = 0 since there is a t in the denominator.
Still g(0) can be evaluated by using power series or
L’Hôpital’s rule.

The moment generating function for an ex-
ponential distribution with parameter λ .
Recall that when events occur in a Poisson pro-
cess uniformly at random over time at a rate of
λ events per unit time, then the random variable
X giving the time to the first event has an expo-
nential distribution. The density function for X is
fX(x) = λe−λx, for x ∈ [0,∞).
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Let’s compute its moment generating function.

m(t) =

∫ ∞
−∞

etxfX(x) dx

=

∫ ∞
0

etxλe−λx dx

= λ

∫ ∞
0

e(t−λ)x dx

= λ
e(t−λ)x

t− λ

∣∣∣∣∞
0

=

(
lim
x→∞

λ
e(t−λ)x

t− λ

)
− λ e0

t− λ

Now if t < λ, then the limit in the last line is 0, so
in that case

m(t) =
λ

λ− t
.

This is a minor, yet important point. The mo-
ment generating function doesn’t have to be defined
for all t. We only need it to be defined for t near
0 because we’re only interested in its derivatives
evaluated at 0.

The moment generating function for the
standard normal distribution. Let Z be a ran-
dom variable with a standard normal distribution.
Its probability density function is

fZ(x) =
1√
2π

e−x
2/2.

Its moments can be computed from the definition,
but it takes repeated applications of integration by
parts to compute

µn =

∫ ∞
−∞

1√
2π

xne−x
2/2 dx.

We won’t do that computation here, but it turns
out that when n is odd, the integral is 0, so µn is 0
if n is odd. On the other hand when n is even, say
n = 2m, then it turns out that

µ2m =
(2m)!

2mm!
.

From these values of all the moments, we can com-
pute the moment generating function.

m(t) =
∞∑
n=0

µn
n!
tn

=
∞∑
m=0

µ2m

(2m)!
t2m

=
∞∑
m=0

(2m)!

2mm!

1

(2m)!
t2m

=
∞∑
m=0

1

2mm!
t2m

= et
2/2

Thus, the moment generating function for the stan-
dard normal distribution Z is

mZ(t) = et
2/2.

More generally, if X = σZ+µ is a normal distribu-
tion with mean µ and variance σ2, then the moment
generating function is

gX(t) = exp(µt+ σ2t2/2).

Math 217 Home Page at
http://math.clarku.edu/~djoyce/ma217/
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